A collection of python3 implementations of trees. Including AVL Tree, Interval Tree and More.
pip3 install pytrees
>>> from pytrees import AVLTree, IntervalTree, BinaryIndexTree, Trie
>>> avl = AVLTree.buildFromList([-1,-2,1,2,3,4,5,6])
>>> avl.visulize()
-----------------Visualize Tree----------------------
2
-1 5
-2 1 3 6
4
-----------------End Visualization-------------------
>>> avl.delete(4)
>>> avl.visulize()
-----------------Visualize Tree----------------------
2
-1 5
-2 1 3 6
-----------------End Visualization-------------------
>>> avl.insert(0)
>>> avl.visulize()
-----------------Visualize Tree----------------------
2
-1 5
-2 1 3 6
0
-----------------End Visualization-------------------
AVL Tree. Balanced Binary Search Tree. Gurantee for balance.
API:
- insert(self, val)
- delete(self, key)
- search(self, key)
- getDepth(self)
- preOrder(self)
- inOrder(self)
- postOrder(self)
- countNodes(self)
- buildFromList(cls, l)
Augmented data structure for checking overlaps of intervals. Gurantee for balance.
API:
- queryOverlap(self, val)
- queryAllOverlaps(self, val)
- insert(self, val)
- delete(self, key)
- search(self, key)
- getDepth(self)
- preOrder(self)
- inOrder(self)
- postOrder(self)
- countNodes(self)
- buildFromList(cls, l)
Simple implementation of Binary Search Tree. No gurantee for balance.
API:
- insert(self, val)
- delete(self, key)
- search(self, key)
- getDepth(self)
- preOrder(self)
- inOrder(self)
- postOrder(self)
- countNodes(self)
- buildFromList(cls, l)
Prefix-tree. Useful for text search.
API:
- insert(self, word)
- search(self, word)
- startsWith(self, prefix)
- findAllWordsStartsWith(self, prefix)
- buildFromList(cls, l)
A Fenwick tree or Binary Indexed Tree is a data structure that can efficiently update elements and calculate prefix sums in a table of numbers.
API:
- update(self,i,k) --> update value k to index i
- prefixSum(self,i) --> sum up [index 0, index 1, ..., index i]
- preview(self)
- getSize(self)
- buildFromList(cls, l)
Time Complexity: update & prefixSum, O(logN)
Space Complexity: O(N)
- "key" and "val" are almost the same in this implementation. use term "key" for search and delete a particular node. use term "val" for other cases