Simple python implementation of various ML regression algorithms.
- python
- numpy
- pandas
- matplotlib
- mpl_toolkits
code file: 1_linear_regression.py
data file: data.xlsx
Linear regression algorithm to estimate the weight parameters for the feature matrix (X) and the class label vector (y). Data file used for this experiment is data.xlsx - the first two columns are features and last columns is label (continous values)
code file: 2_linear_regression_stochastic.py
data file: data.xlsx
Linear regression with stochastic gradient and various plots of cost functions vs other parameters
code file: 3_ridge_regression.py
data file: data.xlsx
Ridge regression with both batch gradient descent and stochastic gradient descent. And various plots of cost functions vs other parameters in each case.
code file: 4_least_angle_regression.py
data file: data.xlsx
Least angle regression with both batch gradient descent and stochastic gradient descent. And various plots of cost functions vs other parameters in each case.
Distributed under the MIT License. See LICENSE.txt
for more information.