-
Notifications
You must be signed in to change notification settings - Fork 125
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
95 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,95 @@ | ||
from sklearn.base import BaseEstimator, RegressorMixin, clone | ||
from sklearn.utils.validation import check_X_y, check_array, check_is_fitted | ||
import numpy as np | ||
from sklearn.model_selection import train_test_split | ||
from sklearn.metrics import mean_squared_error | ||
from sklearn.tree import DecisionTreeRegressor | ||
from sklearn.linear_model import LinearRegression | ||
import imodels | ||
import imodels.algebraic.gam_multitask | ||
|
||
|
||
class ResidualBoostingRegressor(BaseEstimator, RegressorMixin): | ||
def __init__(self, estimator, n_estimators=10): | ||
""" | ||
A meta-estimator that fits a base estimator to the residuals of the | ||
previous estimators. | ||
Parameters: | ||
- estimator: The estimator to fit on the residual of the previous step. | ||
- n_estimators: The number of estimators to fit. | ||
""" | ||
self.estimator = estimator | ||
self.n_estimators = n_estimators | ||
|
||
def fit(self, X, y): | ||
""" | ||
Fit the ensemble of base estimators on the training data. | ||
Parameters: | ||
- X: array-like of shape (n_samples, n_features) | ||
Training data. | ||
- y: array-like of shape (n_samples,) | ||
Target values. | ||
Returns: | ||
- self: object | ||
""" | ||
# Check that X and y have correct shape | ||
X, y = check_X_y(X, y) | ||
|
||
self.estimators_ = [] | ||
current_prediction = np.zeros(y.shape) | ||
|
||
for _ in range(self.n_estimators): | ||
residual = y - current_prediction | ||
estimator = clone(self.estimator) | ||
estimator.fit(X, residual) | ||
self.estimators_.append(estimator) | ||
current_prediction += estimator.predict(X) | ||
|
||
return self | ||
|
||
def predict(self, X): | ||
""" | ||
Predict regression target for X. | ||
Parameters: | ||
- X: array-like of shape (n_samples, n_features) | ||
The input samples. | ||
Returns: | ||
- y_pred: ndarray of shape (n_samples,) | ||
The predicted values. | ||
""" | ||
# Check is fit had been called | ||
check_is_fitted(self) | ||
# Input validation | ||
X = check_array(X) | ||
|
||
predictions = sum(estimator.predict(X) | ||
for estimator in self.estimators_) | ||
return predictions | ||
|
||
|
||
if __name__ == '__main__': | ||
X, y, feature_names = imodels.get_clean_dataset('california_housing') | ||
X_train, X_test, y_train, y_test = train_test_split( | ||
X, y, test_size=0.2, random_state=42) | ||
X_train = X_train[:50, :2] | ||
y_train = y_train[:50] | ||
X_test = X_test[:50, :2] | ||
y_test = y_test[:50] | ||
# estimator = DecisionTreeRegressor(max_depth=3) | ||
estimator = imodels.algebraic.gam_multitask.MultiTaskGAMRegressor() | ||
for n_estimators in [1, 3, 5]: | ||
residual_boosting_regressor = ResidualBoostingRegressor( | ||
estimator=estimator, n_estimators=n_estimators) | ||
residual_boosting_regressor.fit(X_train, y_train) | ||
|
||
y_pred = residual_boosting_regressor.predict(X_test) | ||
mse_train = mean_squared_error( | ||
y_train, residual_boosting_regressor.predict(X_train)) | ||
mse = mean_squared_error(y_test, y_pred) | ||
print( | ||
f'MSE with {n_estimators} estimators: {mse:.2f} (train: {mse_train:.2f})') |