Skip to content

cyanrain7/TRPO-in-MARL

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

37 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Trust Region Policy Optimisation in Multi-Agent Reinforcement Learning

Described in the paper "Trust Region Policy Optimisation in Multi-Agent Reinforcement Learning", this repository develops Heterogeneous Agent Trust Region Policy Optimisation (HATRPO) and Heterogeneous-Agent Proximal Policy Optimisation (HAPPO) algorithms on the bechmarks of SMAC and Multi-agent MUJOCO. HATRPO and HAPPO are the first trust region methods for multi-agent reinforcement learning with theoretically-justified monotonic improvement guarantee. Performance wise, it is the new state-of-the-art algorithm against its rivals such as IPPO, MAPPO and MADDPG. HAPPO and HATRPO have been integrated into HARL framework, please check the latest changes at here.

Installation

Create environment

conda create -n env_name python=3.9
conda activate env_name
pip install -r requirements.txt
conda install pytorch torchvision torchaudio cudatoolkit=11.1 -c pytorch -c nvidia

Multi-agent MuJoCo

Following the instructios in https://github.com/openai/mujoco-py and https://github.com/schroederdewitt/multiagent_mujoco to setup a mujoco environment. In the end, remember to set the following environment variables:

LD_LIBRARY_PATH=${HOME}/.mujoco/mujoco200/bin;
LD_PRELOAD=/usr/lib/x86_64-linux-gnu/libGLEW.so

StarCraft II & SMAC

Run the script

bash install_sc2.sh

Or you could install them manually to other path you like, just follow here: https://github.com/oxwhirl/smac.

How to run

When your environment is ready, you could run shell scripts provided. For example:

cd scripts
./train_mujoco.sh  # run with HAPPO/HATRPO on Multi-agent MuJoCo
./train_smac.sh  # run with HAPPO/HATRPO on StarCraft II

If you would like to change the configs of experiments, you could modify sh files or look for config files for more details. And you can change algorithm by modify algo=happo as algo=hatrpo.

Some experiment results

SMAC

Multi-agent MuJoCo on MAPPO

Additional Experiment Setting

For SMAC

2022/4/24 update important ERROR for SMAC

Fix the parameter of gamma, the right configuration of gamma show as following:
gamma for 3s5z and 2c_vs_64zg is 0.95
gamma for corridor is 0.99

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 3

  •  
  •  
  •