Skip to content

Re-implementation of the method proposed in ''DreamDiffusion: Generating High-Quality Images from Brain EEG Signals'' by Y. Bai, X. Wang et al. for Neural Network Course exam Topics

License

Notifications You must be signed in to change notification settings

dan-crdll/nn_project_dreamdiffusion

Repository files navigation

Re-implementation of the method proposed in ''DreamDiffusion: Generating High-Quality Images from Brain EEG Signals'' by Y. Bai, X. Wang et al.

By Daniele Santino Cardullo | 2127806 | cardullo.2127806@studenti.uniroma1.it

original work: DreamDiffusion (arXiv)

This work is part of the Neural Network Course Exam for academic year 2023 / 2024, all the credits for the original work and publication go to the original authors.

Abstract

DreamDiffusion is a method for generating images directly from electroencephalogram signals. This is achieved by combinating different methodologies such as: self-supervised learning to learn meaningful and efficient latent representations for signals; latent diffusion generative model to generate high quality images; large language model to align signals embeddings with image-text ones.

Run The Code

To run the code create a virtual environment and install requirements, then take a look at solution_description.ipynb.

Directory Tree

📦 nn_project_dreamdiffusion
├─ .gitignore
├─ README.md
├─ default_config.yaml
├─ requirements.txt
├─ solution_description.ipynb
├─ datasets
│  ├─ finetune_images/
│  ├─ finetune_dataset.pth
│  └─ pretrain_dataset.pth
├─ pretrained_models
│  ├─ pretrained_mae.ckpt
│  ├─ finetuned_eeg_encoder.pth
│  ├─ finetuned_unet.pth
│  ├─ finetuned_projector_tau.pth
│  └─ train_loss_mae.csv
└─ source
   ├─ datasets
   │  ├─ finetuning_dataset
   │  └─ pretraining_dataset.py
   ├─ eeg_diffusion
   │  ├─ dream_diffusion.
   │  └─ projector.py
   └─ eeg_mae
      ├─ attention_block.py
      ├─ eeg_autoencoder.py
      ├─ encoder_config.py
      ├─ masked_decoder.py
      ├─ masked_encoder.py
      └─ masked_loss.py

Links

About

Re-implementation of the method proposed in ''DreamDiffusion: Generating High-Quality Images from Brain EEG Signals'' by Y. Bai, X. Wang et al. for Neural Network Course exam Topics

Topics

Resources

License

Stars

Watchers

Forks