conda create --name openmmlab python=3.8 -y
conda activate openmmlab
pip install torch==1.11.0+cu113 torchvision==0.12.0+cu113 torchaudio==0.11.0 --extra-index-url https://download.pytorch.org/whl/cu113
pip install -U openmim
mim install mmengine
mim install mmcv
- Run the following commands:
This will generate a file named
bash create_gt.sh python create_data.py
all.csv
.
To split the data into training and testing sets similar to the utvm-vtcc team, use:
python create_kfolds.py
Alternatively, you can download the dataset directly. Download 0.zip
and 1-15.zip
from this Google Drive folder and unzip them.
The dataset folder should have the following structure:
dataset
├── 0
├── 1
├── 2
├── 3
├── 4
├── 5
├── 6
├── 7
├── 8
├── 9
├── 10
├── 11
├── 12
├── 13
├── 14
└── 15
Make sure to update the data_path
variable to point to your dataset directory. Then run the training script:
bash run.sh
Log Wandb
-
Navigate to the
infer
directory:cd infer
-
Download the
final_models.zip
file from this Google Drive folder and unzip it. -
The folder structure for the models should look like this:
final_models ├── tf_efficientnetv2_l_in21k imgs 256 bs 16 │ ├── 2023_09_14_09.48 │ └── 2023_09_14_17.18 ├── tf_efficientnetv2_m_in21k imgs 256 bs 48 │ ├── 2023_09_09_16.11 │ └── 2023_09_09_19.32 └── tf_efficientnetv2_s_in21k imgs 256 bs 48 ├── 2023_09_13_17.46 └── 2023_09_13_20.17
-
Run the final inference:
python final_inference.py
You can also experiment with training other algorithms like:
- SlowFast
- C3D
- TANet
- TSN
For more details, refer to the "mmaction2/readme.md"
file.
- Docker File
- Dataset Creation by Divedeeper - Team 83
- Pose Extraction using mmaction2