Skip to content

Commit

Permalink
Add the optional dependencies parameters in the transform/partitioned…
Browse files Browse the repository at this point in the history
…_transform methods (#4891)

* Add the optional dependencies parameters

* Apply suggestions from code review

Co-authored-by: Ryan Caudy <rcaudy@gmail.com>

* Respond to review comments

---------

Co-authored-by: Ryan Caudy <rcaudy@gmail.com>
  • Loading branch information
2 people authored and devinrsmith committed Nov 29, 2023
1 parent 5dad9fe commit facdb71
Show file tree
Hide file tree
Showing 2 changed files with 40 additions and 6 deletions.
30 changes: 24 additions & 6 deletions py/server/deephaven/table.py
Original file line number Diff line number Diff line change
Expand Up @@ -2657,13 +2657,18 @@ def constituent_tables(self) -> List[Table]:
"""Returns all the current constituent tables."""
return list(map(Table, self.j_partitioned_table.constituents()))

def transform(self, func: Callable[[Table], Table]) -> PartitionedTable:
def transform(self, func: Callable[[Table], Table],
dependencies: Optional[Sequence[Union[Table, PartitionedTable]]] = None) -> PartitionedTable:
"""Apply the provided function to all constituent Tables and produce a new PartitionedTable with the results
as its constituents, with the same data for all other columns in the underlying partitioned Table. Note that
if the Table underlying this PartitionedTable changes, a corresponding change will propagate to the result.
Args:
func (Callable[[Table], Table]): a function which takes a Table as input and returns a new Table
dependencies (Optional[Sequence[Union[Table, PartitionedTable]]]): additional dependencies that must be
satisfied before applying the provided transform function to added or modified constituents during
update processing. If the transform function uses any other refreshing Table or refreshing Partitioned
Table, they must be included in this argument. Defaults to None.
Returns:
a PartitionedTable
Expand All @@ -2673,13 +2678,18 @@ def transform(self, func: Callable[[Table], Table]) -> PartitionedTable:
"""
try:
j_operator = j_unary_operator(func, dtypes.from_jtype(Table.j_object_type.jclass))
with auto_locking_ctx(self):
j_pt = self.j_partitioned_table.transform(j_operator)
dependencies = to_sequence(dependencies, wrapped=True)
j_dependencies = [d.j_table for d in dependencies if isinstance(d, Table) and d.is_refreshing]
j_dependencies.extend([d.table.j_table for d in dependencies if isinstance(d, PartitionedTable) and d.is_refreshing])
with auto_locking_ctx(self, *dependencies):
j_pt = self.j_partitioned_table.transform(j_operator, j_dependencies)
return PartitionedTable(j_partitioned_table=j_pt)
except Exception as e:
raise DHError(e, "failed to transform the PartitionedTable.") from e

def partitioned_transform(self, other: PartitionedTable, func: Callable[[Table, Table], Table]) -> PartitionedTable:
def partitioned_transform(self, other: PartitionedTable, func: Callable[[Table, Table], Table],
dependencies: Optional[Sequence[Union[Table, PartitionedTable]]] = None) -> \
PartitionedTable:
"""Join the underlying partitioned Tables from this PartitionedTable and other on the key columns, then apply
the provided function to all pairs of constituent Tables with the same keys in order to produce a new
PartitionedTable with the results as its constituents, with the same data for all other columns in the
Expand All @@ -2692,6 +2702,10 @@ def partitioned_transform(self, other: PartitionedTable, func: Callable[[Table,
other (PartitionedTable): the other Partitioned table whose constituent tables will be passed in as the 2nd
argument to the provided function
func (Callable[[Table, Table], Table]): a function which takes two Tables as input and returns a new Table
dependencies (Optional[Sequence[Union[Table, PartitionedTable]]]): additional dependencies that must be
satisfied before applying the provided transform function to added, modified, or newly-matched
constituents during update processing. If the transform function uses any other refreshing Table or
refreshing Partitioned Table, they must be included in this argument. Defaults to None.
Returns:
a PartitionedTable
Expand All @@ -2701,8 +2715,12 @@ def partitioned_transform(self, other: PartitionedTable, func: Callable[[Table,
"""
try:
j_operator = j_binary_operator(func, dtypes.from_jtype(Table.j_object_type.jclass))
with auto_locking_ctx(self, other):
j_pt = self.j_partitioned_table.partitionedTransform(other.j_partitioned_table, j_operator)
dependencies = to_sequence(dependencies, wrapped=True)
j_dependencies = [d.j_table for d in dependencies if isinstance(d, Table) and d.is_refreshing]
j_dependencies.extend([d.table.j_table for d in dependencies if isinstance(d, PartitionedTable) and d.is_refreshing])
with auto_locking_ctx(self, other, *dependencies):
j_pt = self.j_partitioned_table.partitionedTransform(other.j_partitioned_table, j_operator,
j_dependencies)
return PartitionedTable(j_partitioned_table=j_pt)
except Exception as e:
raise DHError(e, "failed to transform the PartitionedTable with another PartitionedTable.") from e
Expand Down
16 changes: 16 additions & 0 deletions py/server/tests/test_partitioned_table.py
Original file line number Diff line number Diff line change
Expand Up @@ -11,6 +11,7 @@
from deephaven.filters import Filter

from deephaven import read_csv, DHError, new_table, update_graph, time_table, empty_table
from deephaven.update_graph import shared_lock
from tests.testbase import BaseTestCase
from deephaven.execution_context import get_exec_ctx

Expand Down Expand Up @@ -128,6 +129,13 @@ def test_transform(self):
pt = self.partitioned_table.transform(Transformer)
self.assertIn("f", [col.name for col in pt.constituent_table_columns])

ticking_t = time_table("PT00:00:01")
pt = self.partitioned_table.transform(Transformer, dependencies=[ticking_t])
self.assertIn("f", [col.name for col in pt.constituent_table_columns])

pt = self.partitioned_table.transform(Transformer, dependencies=[self.test_table])
self.assertIn("f", [col.name for col in pt.constituent_table_columns])

with self.assertRaises(DHError) as cm:
pt = self.partitioned_table.transform(lambda t, t1: t.join(t1))
self.assertRegex(str(cm.exception), r"missing .* argument")
Expand All @@ -141,6 +149,14 @@ def test_partitioned_transform(self):
pt = self.partitioned_table.partitioned_transform(other_pt, PartitionedTransformer())
self.assertIn("f", [col.name for col in pt.constituent_table_columns])

ticking_pt = time_table("PT00:00:01").update(["X= i % 10", "Y = String.valueOf(i)"]).partition_by("X")
pt = self.partitioned_table.partitioned_transform(other_pt, PartitionedTransformer(),
dependencies=[ticking_pt])
self.assertIn("f", [col.name for col in pt.constituent_table_columns])

pt = self.partitioned_table.partitioned_transform(other_pt, PartitionedTransformer(), dependencies=[other_pt])
self.assertIn("f", [col.name for col in pt.constituent_table_columns])

def test_partition_agg(self):
with update_graph.shared_lock(self.test_update_graph):
test_table = time_table("PT00:00:00.001").update(["X=i", "Y=i%13", "Z=X*Y"])
Expand Down

0 comments on commit facdb71

Please sign in to comment.