The interface
package provides a system for defining and implementing
interfaces in R, with runtime type checking, bringing some of the
benefits of statically-typed languages to R with zero dependencies.
interface
provides:
- Interfaces: Define and implement interfaces with type checking. Interfaces can be extended and nested.
- Typed Functions: Define functions with strict type constraints.
- Typed Frames: Choose between a
data.frame
ordata.table
with column type constraints and row validation. - Enums: Define and use enumerated types for stricter type safety.
Install the package from CRAN:
install.packages("interface")
Or install the latest development version from GitHub:
# Install the package from the source
remotes::install_github("dereckmezquita/interface")
Import the package functions.
box::use(interface[ interface, type.frame, fun, enum ])
Define an interface and implement it:
# Define an interface
Person <- interface(
name = character,
age = numeric,
email = character
)
# Implement the interface
john <- Person(
name = "John Doe",
age = 30,
email = "john@example.com"
)
print(john)
#> Object implementing interface:
#> name: John Doe
#> age: 30
#> email: john@example.com
#> Validation on access: Disabled
# interfaces are lists
print(john$name)
#> [1] "John Doe"
# Modify the object
john$age <- 10
print(john$age)
#> [1] 10
# Invalid assignment (throws error)
try(john$age <- "thirty")
#> Error : Property 'age' must be of type numeric
Create nested and extended interfaces:
# Define nested interfaces
Address <- interface(
street = character,
city = character,
postal_code = character
)
Scholarship <- interface(
amount = numeric,
status = logical
)
# Extend interfaces
Student <- interface(
extends = c(Address, Person),
student_id = character,
scores = data.table::data.table,
scholarship = Scholarship
)
# Implement the extended interface
john_student <- Student(
name = "John Doe",
age = 30,
email = "john@example.com",
street = "123 Main St",
city = "Small town",
postal_code = "12345",
student_id = "123456",
scores = data.table::data.table(
subject = c("Math", "Science"),
score = c(95, 88)
),
scholarship = Scholarship(
amount = 5000,
status = TRUE
)
)
print(john_student)
#> Object implementing interface:
#> student_id: 123456
#> scores: Math
#> scores: Science
#> scores: 95
#> scores: 88
#> scholarship: <environment: 0x12ad94c40>
#> street: 123 Main St
#> city: Small town
#> postal_code: 12345
#> name: John Doe
#> age: 30
#> email: john@example.com
#> Validation on access: Disabled
Interfaces can have custom validation functions:
is_valid_email <- function(x) {
grepl("[a-z|0-9]+\\@[a-z|0-9]+\\.[a-z|0-9]+", x)
}
UserProfile <- interface(
username = character,
email = is_valid_email,
age = function(x) is.numeric(x) && x >= 18
)
# Implement with valid data
valid_user <- UserProfile(
username = "john_doe",
email = "john@example.com",
age = 25
)
print(valid_user)
#> Object implementing interface:
#> username: john_doe
#> email: john@example.com
#> age: 25
#> Validation on access: Disabled
# Invalid implementation (throws error)
try(UserProfile(
username = "jane_doe",
email = "not_an_email",
age = "30"
))
#> Error : Errors occurred during interface creation:
#> - Invalid value for property 'email': FALSE
#> - Invalid value for property 'age': FALSE
Define functions with strict type constraints:
typed_fun <- fun(
x = numeric,
y = numeric,
return = numeric,
impl = function(x, y) {
return(x + y)
}
)
print(typed_fun(1, 2)) # [1] 3
#> [1] 3
try(typed_fun("a", 2)) # Invalid call
#> Error : Property 'x' must be of type numeric
Functions with multiple possible return types:
typed_fun2 <- fun(
x = c(numeric, character),
y = numeric,
return = c(numeric, character),
impl = function(x, y) {
if (is.numeric(x)) {
return(x + y)
} else {
return(paste(x, y))
}
}
)
print(typed_fun2(1, 2)) # [1] 3
#> [1] 3
print(typed_fun2("a", 2)) # [1] "a 2"
#> [1] "a 2"
Create data.frame
s with column type constraints and row validation:
PersonFrame <- type.frame(
frame = data.frame,
col_types = list(
id = integer,
name = character,
age = numeric,
is_student = logical
)
)
# Create a data frame
persons <- PersonFrame(
id = 1:3,
name = c("Alice", "Bob", "Charlie"),
age = c(25, 30, 35),
is_student = c(TRUE, FALSE, TRUE)
)
print(persons)
#> Typed Data Frame Summary:
#> Base Frame Type: data.frame
#> Dimensions: 3 rows x 4 columns
#>
#> Column Specifications:
#> id : integer
#> name : character
#> age : numeric
#> is_student : logical
#>
#> Frame Properties:
#> Freeze columns : Yes
#> Allow NA : Yes
#> On violation : error
#>
#> Data Preview:
#> id name age is_student
#> 1 1 Alice 25 TRUE
#> 2 2 Bob 30 FALSE
#> 3 3 Charlie 35 TRUE
# Invalid modification (throws error)
try(persons$id <- letters[1:3])
#> Error : Property 'id' must be of type integer
Additional options for data.frame
validation:
PersonFrame <- type.frame(
frame = data.frame,
col_types = list(
id = integer,
name = character,
age = numeric,
is_student = logical,
gender = enum("M", "F"),
email = function(x) all(grepl("^[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\\.[a-zA-Z]{2,}$", x))
),
freeze_n_cols = FALSE,
row_callback = function(row) {
if (row$age >= 40) {
return(sprintf("Age must be less than 40 (got %d)", row$age))
}
if (row$name == "Yanice") {
return("Name cannot be 'Yanice'")
}
return(TRUE)
},
allow_na = FALSE,
on_violation = "error"
)
df <- PersonFrame(
id = 1:3,
name = c("Alice", "Bob", "Charlie"),
age = c(25, 35, 35),
is_student = c(TRUE, FALSE, TRUE),
gender = c("F", "M", "M"),
email = c("alice@test.com", "bob_no_valid@test.com", "charlie@example.com")
)
print(df)
#> Typed Data Frame Summary:
#> Base Frame Type: data.frame
#> Dimensions: 3 rows x 6 columns
#>
#> Column Specifications:
#> id : integer
#> name : character
#> age : numeric
#> is_student : logical
#> gender : Enum(M, F)
#> email : custom function
#>
#> Frame Properties:
#> Freeze columns : No
#> Allow NA : No
#> On violation : error
#>
#> Data Preview:
#> id name age is_student gender email
#> 1 1 TRUE 1 TRUE TRUE TRUE
#> 2 1 TRUE 1 TRUE TRUE TRUE
#> 3 1 TRUE 1 TRUE TRUE TRUE
summary(df)
#> id name age is_student
#> Min. :1 Length:3 Min. :1 Mode:logical
#> 1st Qu.:1 Class :character 1st Qu.:1 TRUE:3
#> Median :1 Mode :character Median :1
#> Mean :1 Mean :1
#> 3rd Qu.:1 3rd Qu.:1
#> Max. :1 Max. :1
#> gender.Length gender.Class gender.Mode email
#> 1 -none- logical Length:3
#> 1 -none- logical Class :character
#> 1 -none- logical Mode :character
#>
#>
#>
# Invalid row addition (throws error)
try(rbind(df, data.frame(
id = 4,
name = "David",
age = 50,
is_student = TRUE,
email = "d@test.com"
)))
#> Error in rbind(deparse.level, ...) : Number of columns must match
Define enums for categorical variables; these are safe to use to protect
a value from being modified to invalid options. The enum
function
creates a generator which is then used to create the enum object. This
can be used standalone or as part of an interface.
Colour <- enum("red", "green", "blue")
# Create an enum object
colour <- Colour("red")
print(colour)
#> Enum: red
colour$value <- "green"
print(colour)
#> Enum: green
# Invalid modification (throws error)
try(colour$value <- "yellow")
#> Error in `$<-.enum`(`*tmp*`, value, value = "yellow") :
#> Invalid value. Must be one of: red, green, blue
# Use in an interface
Car <- interface(
make = enum("Toyota", "Ford", "Chevrolet"),
model = character,
colour = Colour
)
# Implement the interface
car1 <- Car(
make = "Toyota",
model = "Corolla",
colour = "red"
)
print(car1)
#> Object implementing interface:
#> make: Toyota
#> model: Corolla
#> colour: red
#> Validation on access: Disabled
# Invalid implementation (throws error)
try(Car(
make = "Honda",
model = "Civic",
colour = "yellow"
))
#> Error : Errors occurred during interface creation:
#> - Invalid enum value for property 'make': Invalid value. Must be one of: Toyota, Ford, Chevrolet
#> - Invalid enum value for property 'colour': Invalid value. Must be one of: red, green, blue
# Invalid modification (throws error)
try(car1$colour$value <- "yellow")
#> Error in `$<-.enum`(`*tmp*`, value, value = "yellow") :
#> Invalid value. Must be one of: red, green, blue
try(car1$make$value <- "Honda")
#> Error in `$<-.enum`(`*tmp*`, value, value = "Honda") :
#> Invalid value. Must be one of: Toyota, Ford, Chevrolet
The interface
package provides powerful tools for ensuring type safety
and validation in R. By defining interfaces, typed functions, and typed
data.frame
s, you can create robust and reliable data structures and
functions with strict type constraints. For more details, refer to the
package documentation.
This package is licensed under the MIT License.
If you use this package in your research or work, please cite it as:
Mezquita, D. (2024). interface: A Runtime Type System. R package version 0.1.2. https://github.com/dereckmezquita/interface