Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add 2D Gaussian fitter to fit module #192

Open
wants to merge 6 commits into
base: main
Choose a base branch
from
Open
Changes from 1 commit
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
76 changes: 75 additions & 1 deletion decode/qlook.py
Original file line number Diff line number Diff line change
Expand Up @@ -27,7 +27,9 @@
from fire import Fire
from matplotlib.figure import Figure
from . import assign, convert, load, make, plot, select, utils

import copy
from scipy.optimize import curve_fit
import pandas as pd

# constants
DATA_FORMATS = "csv", "nc", "zarr", "zarr.zip"
Expand Down Expand Up @@ -223,6 +225,10 @@ def daisy(
)
cont = cube.weighted(weight.fillna(0)).mean("chan")

### GaussFit (all chan)
df_gauss_fit = fit_cube(cube)
# to toml here

# save result
suffixes = f".{suffix}.{format}"
file = Path(outdir) / Path(dems).with_suffix(suffixes).name
Expand Down Expand Up @@ -446,6 +452,10 @@ def raster(
)
cont = cube.weighted(weight.fillna(0)).mean("chan")

### GaussFit (all chan)
df_gauss_fit = fit_cube(cube)
# to toml here

# save result
suffixes = f".{suffix}.{format}"
file = Path(outdir) / Path(dems).with_suffix(suffixes).name
Expand Down Expand Up @@ -1233,6 +1243,70 @@ def save_qlook(
raise ValueError("Extension of filename is not valid.")


def gaussian_2d(xy, amp, xo, yo, sigma_x, sigma_y, theta, offset):
x, y = xy
xo = float(xo)
yo = float(yo)
a = (np.cos(theta) ** 2) / (2 * sigma_x**2) + (np.sin(theta) ** 2) / (
2 * sigma_y**2
)
b = -(np.sin(2 * theta)) / (4 * sigma_x**2) + (np.sin(2 * theta)) / (4 * sigma_y**2)
c = (np.sin(theta) ** 2) / (2 * sigma_x**2) + (np.cos(theta) ** 2) / (
2 * sigma_y**2
)
g = offset + amp * np.exp(
-(a * ((x - xo) ** 2) + 2 * b * (x - xo) * (y - yo) + c * ((y - yo) ** 2))
)
return g.ravel()


def fit_cube(cube):
res_list = []
header = [
"mkid_id",
"amp",
"center_lon",
"center_lat",
"sigma_x",
"sigma_y",
"theta_deg",
"floor",
"err_amp",
"err_center_lon",
"err_center_lat",
"err_sigma_x",
"err_sigma_y",
"err_theta_deg",
"err_floor",
]
for i in range(len(cube)):
res = []
xr_tempo = cube[i]
mkid_id = int(xr_tempo["d2_mkid_id"])
res.append(mkid_id)
try:
data_tempo = np.array(xr_tempo.data)
data_tempo[data_tempo != data_tempo] = 0.0
x, y = np.meshgrid(np.array(cube["lon"]), np.array(cube["lat"]))
initial_guess = (1, 0, 0, 30, 30, 0, 0)
popt, pcov = curve_fit(
gaussian_2d, (x, y), data_tempo.ravel(), p0=initial_guess
)
perr = np.sqrt(np.diag(pcov))
for j in range(7):
res.append(popt[j])
for j in range(7):
res.append(perr[j])
except:
for j in range(7):
res.append(np.nan)
for j in range(7):
res.append(np.nan)
res_list.append(res)
res_df = pd.DataFrame(np.array(res_list), columns=np.array(header))
return res_df


def main() -> None:
"""Entry point of the decode-qlook command."""

Expand Down