Skip to content

devJUKI/travelling-salesman-genetic-algorithm

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

26 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

TSP_GA

Travelling salesman problem using genetic algorithm


Algorithm flowchart

drawing

Time complexity

What each letter means:

  • P - Population count
  • T - Traveller count
  • L - Location count
  • G - Generation count

Genetic algorithm starts from this method

public void Start() {
    if (singleThread) {                               // c1 | 1
        for (int i = 1; i <= generationCount; i++) {  // c2 | G + 1    
            ExecuteStep(currGeneration, i);           // c3 | G * (P * T * L^2)
        }
    } else {
        Parallel.For(1, generationCount, (i) => {     // c2 | G + 1   
            ExecuteStep(currGeneration, i);           // c3 | G * (P * T * L^2)
        });
    }

    OnJobDone?.Invoke(bestPopulation!);
}

But to calculate the complexity of this method, we first need to calculate the complexity of the methods that it calls. Let's dive into ExecuteStep method.

I will instantly show the calculations for time complexities, but I will provide code and calculations of the independent methods below, so you can see where I got everything from.

T(G, P, T, L) = 1 + (G + 1) + (G * (P * T * L^2)) = G + (G * (P * T * L^2)) = G * P * T * L^2 = O(G * P * T * L^2)

Algorithm's time complexity is O(G * P * T * L^2).

ExecuteStep()

private void ExecuteStep(Generation generation, int index) {
    currGeneration = GetNextGeneration(generation);                 // c1 | P * T * L^2
    currGeneration.NormalizeFitnesses();                            // c2 | P

    if (index % 100 == 0) {
        OnHundredthGeneration?.Invoke(index, bestGenPopulation!);
    }

    CheckBestPopulation(currGeneration);                            // c3 | P
}

ExecuteStep method consists of 3 main methods - GetNextGeneration, NormalizeFitnesses and CheckBestPopulation. We have to start from the smallest, independent methods and work our way up to the main methods to calculate their time complexities.

T(P, T, L) = (P * T * L^2) + P + P = P * T * L^2 = O(P * T * L^2)

GetNextGeneration()

private Generation GetNextGeneration(Generation currGeneration) {
    Generation nextGen = new();                                     // c1 | 1
    Population A = currGeneration.GetRandomPopulation();            // c2 | 1 * P^2
    Population B = currGeneration.GetRandomPopulation();            // c3 | 1 * P^2
    for (int j = 0; j < currGeneration.Populations.Count; j++) {    // c4 | P + 1
        Population population = Crossover(A, B);                    // c5 | P * T * L^2
        population = Mutate(population);                            // c6 | P * TL
        nextGen.AddPopulation(population);                          // c7 | P
    }

    return nextGen;                                                 // c8 | 1
}

T(P, T, L) = 1 + (1 * P^2) + (1 * P^2) + (P + 1) + (P * T * L^2) + (P * TL) + P + 1 = (2 * P^2)

We can see which methods need their time complexities to be calculated, so let's get started.

GetRandomPopulation()

public Population GetRandomPopulation() {
    List<Population> sortedPopulations = Populations.OrderBy(x => x.Fitness).ToList();  // c1 | P^2
    double random = new Random().NextDouble();                                          // c2 | 1
    int index = 0;                                                                      // c3 | 1
    Population currPopulation = sortedPopulations[0];                                   // c4 | 1
    while (currPopulation.NormalizedFitness > 1 - random) {                             // c5 | P + 1
        random -= currPopulation.NormalizedFitness;                                     // c6 | P
        currPopulation = sortedPopulations[++index];                                    // c7 | P
    }
    return currPopulation;                                                              // c8 | 1
}

It's time complexity would be:

T(P) = P^2 + 1 + 1 + 1 + P + P + P + 1 = P^2 + 3P = P^2 = O(P^2)

Crossover()

private Population Crossover(Population A, Population B) {
    List<List<int>> orders = new();                                 // c1  | 1 
    Random random = new();                                          // c2  | 1

    for (int k = 0; k < A.Paths.Count; k++) {                       // c3  | T + 1
        int start = random.Next(0, A.Paths[k].Count);               // c4  | T
        int end = random.Next(start + 1, B.Paths[k].Count);         // c5  | T
        List<int> order = A.Paths[k].GetRange(start, end - start);  // c6  | T

        int left = Program.Places.Count - order.Count;              // c7  | T
        for (int i = 0; i < left; i++) {                            // c8  | T * (L + 1)
            for (int j = 0; j < B.Paths[k].Count; j++) {            // c9  | TL * (L + 1)
                if (!order.Contains(B.Paths[k][j])) {               // c10 | T * L^2
                    order.Add(B.Paths[k][j]);                       // c11 | T * L^2
                }
            }
        }

        // Make sure 0 is always the first element
        order.Remove(0);                                            // c12 | T
        order.Insert(0, 0);                                         // c13 | T
        orders.Add(order);                                          // c14 | T
    }

    return new Population(orders);                                  // c15 | 1 * TL
}

T(T, L) = 1 + 1 + (T + 1) + T + T + T + T + (T * (L + 1)) + (TL * (L + 1)) + (T * L^2) + (T * L^2) + T + T + T + TL = 8T + 2TL + 3(T * L^2) = T * L^2 = O(T * L^2)

Population constructor()

public Population(List<List<int>> paths) {
    Paths = paths;          // c1 | 1
    Fitness = GetFitness(); // c2 | TL
    Price = GetPrice();     // c3 | TL
}

T(T, L) = 1 + TL + TL = 2TL = O(TL)

private double GetDistance(List<int> order) {
    double distance = 0;                                                // c1 | 1
    for (int i = 0; i < order.Count - 1; i++) {                         // c2 | L + 1
        Location place1 = Program.Places[order[i]];                     // c3 | L
        Location place2 = Program.Places[order[i + 1]];                 // c4 | L
        // Convert to km
        double xDiff = (place1.X - place2.X) / 1000;                    // c5 | L
        double yDiff = (place1.Y - place2.Y) / 1000;                    // c6 | L
        distance += Math.Sqrt(Math.Pow(xDiff, 2) + Math.Pow(yDiff, 2)); // c7 | L
    }
    return distance;                                                    // c8 | 1
}

T(L) = 1 + (L + 1) + L + L + L + L + L + 1 = 6L = L = O(L)

private double GetFitness() {
    List<double> times = new();                                     // c1 | 1
    // 1 km = 1 min
    Paths.ForEach(order => times.Add(GetDistance(order)));          // c2 | T * L
    // Adding rest times
    for (int i = 0; i < times.Count; i++) {                         // c3 | T + 1
        int timeInPlaces = Paths[i].Count * 60;                     // c4 | T
        int restTimes = (int)Math.Floor(times[i] / 16);             // c5 | T
        times[i] = times[i] + restTimes * 8 * 60 + timeInPlaces;    // c6 | T
    }
    return times.Max();                                             // c7 | T
}

T(T, L) = 1 + TL + (T + 1) + T + T + T + T = TL + 5T = TL = O(TL)

private double GetPrice() {
    List<double> distances = new();                             // c1 | 1
    Paths.ForEach(order => distances.Add(GetDistance(order)));  // c2 | T * L
    double price = 0;                                           // c3 | 1
    distances.ForEach(d => price += Math.Sqrt(d));              // c4 | T
    return price;                                               // c5 | 1
}

T(T, L) = 1 + TL + 1 + T + 1 = TL + T = TL = O(TL)

Mutate()

private Population Mutate(Population population) {
    List<List<int>> orders = new();                                 // c1 | 1
    for (int i = 0; i < population.Paths.Count; i++) {              // c2 | T + 1
        List<int> shuffledOrder = population.Paths[i].Shuffle();    // c3 | T * T
        // Make sure 0 is always the first element
        shuffledOrder.Remove(0);                                    // c4 | T
        shuffledOrder.Insert(0, 0);                                 // c5 | T
        orders.Add(shuffledOrder);                                  // c6 | T
    }
    return new Population(orders);                                  // c7 | TL
}

T(T, L) = 1 + (T + 1) + T^2 + T + T + T + TL = 4T + T^2 + TL = TL = O(TL)

There most likely will be more locations than travellers, hence O(TL) and not O(T^2).

NormalizeFitnesses

Now we can move onto the next main method - NormalizeFitnesses

    public void NormalizeFitnesses() {
    double sum = 0;                                 // c1 | 1
    Populations.ForEach(gen => sum += gen.Fitness); // c2 | P
    for (int i = 0; i < Populations.Count; i++) {   // c3 | P + 1
        Populations[i].SetNormalizeFitness(sum);    // c4 | P
    }
}

T(P) = 1 + P + (P + 1) + P = 3P = P = O(P)

CheckBestPopulation

And this is the last method we need to calculate time complexity for. Then we will be able to find whole algorithm's time complexity.

private void CheckBestPopulation(Generation generation) {
    bestGenPopulation = generation.GetBestPopulation(); // c1 | P

    if (bestGenPopulation < bestPopulation!) {          // c2 | 1
        bestPopulation = bestGenPopulation;             // c3 | 1
        OnBestSolutionChanged?.Invoke(bestPopulation);
    }
}

T(P) = P + 1 + 1 = P = O(P)

Shuffle list extension

public static List<T> Shuffle<T>(this List<T> list) {
    List<T> temp = new(list);                     // c1 | 1
    Random random = new();                        // c2 | 1
    int n = temp.Count;                           // c3 | 1
    while (n > 1) {                               // c4 | n + 1
        n--;                                      // c5 | n
        int k = random.Next(n + 1);               // c6 | n
        (temp[n], temp[k]) = (temp[k], temp[n]);  // c7 | n
    }
    return temp;                                  // c8 | 1
}

T(n) = 1 + 1 + 1 + (n + 1) + n + n + n + 1 = 4n = n = O(n)

About

Travelling salesman problem using genetic algorithm

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages