Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Update API #14

Merged
merged 5 commits into from
Oct 3, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 4 additions & 0 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -16,11 +16,15 @@ SbiJAX so far implements
- Rejection ABC (`RejectionABC`),
- Sequential Monte Carlo ABC (`SMCABC`),
- Sequential Neural Likelihood Estimation (`SNL`)
- Surjective Sequential Neural Likelihood Estimation (`SSNL`)
- Sequential Neural Posterior Estimation C (short `SNP`)

## Examples

You can find several self-contained examples on how to use the algorithms in `examples`.

## Usage

## Installation

Make sure to have a working `JAX` installation. Depending whether you want to use CPU/GPU/TPU,
Expand Down
6 changes: 4 additions & 2 deletions examples/bivariate_gaussian_smcabc.py
Original file line number Diff line number Diff line change
Expand Up @@ -7,6 +7,7 @@
import matplotlib.pyplot as plt
import seaborn as sns
from jax import numpy as jnp
from jax import random as jr

from sbijax import SMCABC

Expand Down Expand Up @@ -42,8 +43,9 @@ def run():
fns = (prior_simulator_fn, prior_logdensity_fn), simulator_fn

smc = SMCABC(fns, summary_fn, distance_fn)
smc.fit(23, y_observed)
smc_samples, _ = smc.sample_posterior(10, 1000, 1000, 0.8, 500)
smc_samples, _ = smc.sample_posterior(
jr.PRNGKey(22), y_observed, 10, 1000, 1000, 0.6, 500
)

fig, axes = plt.subplots(2)
for i in range(2):
Expand Down
40 changes: 20 additions & 20 deletions examples/bivariate_gaussian_snl.py
Original file line number Diff line number Diff line change
Expand Up @@ -11,7 +11,7 @@
import optax
import seaborn as sns
from jax import numpy as jnp
from jax import random
from jax import random as jr
from surjectors import (
Chain,
MaskedAutoregressive,
Expand All @@ -31,16 +31,14 @@ def prior_model_fns():


def simulator_fn(seed, theta):
p = distrax.Normal(jnp.zeros_like(theta), 0.1)
p = distrax.Normal(jnp.zeros_like(theta), 1.0)
y = theta + p.sample(seed=seed)
return y


def log_density_fn(theta, y):
prior = distrax.Independent(distrax.Normal(jnp.zeros(2), jnp.ones(2)), 1)
likelihood = distrax.MultivariateNormalDiag(
theta, 0.1 * jnp.ones_like(theta)
)
likelihood = distrax.MultivariateNormalDiag(theta, jnp.ones_like(theta))

lp = jnp.sum(prior.log_prob(theta)) + jnp.sum(likelihood.log_prob(y))
return lp
Expand Down Expand Up @@ -94,26 +92,28 @@ def run():

snl = SNL(fns, make_model(2))
optimizer = optax.adam(1e-3)
params, info = snl.fit(
random.PRNGKey(23),
y_observed,
optimizer=optimizer,
n_rounds=3,
max_n_iter=100,
batch_size=64,
n_early_stopping_patience=5,
sampler="slice",
)

data, params = None, {}
for i in range(2):
data, _ = snl.simulate_data_and_possibly_append(
jr.fold_in(jr.PRNGKey(12), i),
params=params,
observable=y_observed,
data=data,
)
params, info = snl.fit(
jr.fold_in(jr.PRNGKey(23), i), data=data, optimizer=optimizer
)

sample_key, rng_key = jr.split(jr.PRNGKey(123))
slice_samples = sample_with_slice(
hk.PRNGSequence(0), log_density, 4, 2000, 1000, prior_simulator_fn
sample_key, log_density, prior_simulator_fn
)
slice_samples = slice_samples.reshape(-1, 2)
snl_samples, _ = snl.sample_posterior(
params, 4, 2000, 1000, sampler="slice"
)

print(f"Took n={snl.n_total_simulations} simulations in total")
sample_key, rng_key = jr.split(rng_key)
snl_samples, _ = snl.sample_posterior(sample_key, params, y_observed)

fig, axes = plt.subplots(2, 2)
for i in range(2):
sns.histplot(
Expand Down
36 changes: 20 additions & 16 deletions examples/bivariate_gaussian_snp.py
Original file line number Diff line number Diff line change
Expand Up @@ -9,7 +9,7 @@
import optax
import seaborn as sns
from jax import numpy as jnp
from jax import random
from jax import random as jr
from surjectors import Chain, TransformedDistribution
from surjectors.bijectors.masked_autoregressive import MaskedAutoregressive
from surjectors.bijectors.permutation import Permutation
Expand All @@ -25,7 +25,7 @@ def prior_model_fns():


def simulator_fn(seed, theta):
p = distrax.Normal(jnp.zeros_like(theta), 0.1)
p = distrax.Normal(jnp.zeros_like(theta), 1.0)
y = theta + p.sample(seed=seed)
return y

Expand Down Expand Up @@ -72,21 +72,25 @@ def run():
prior_simulator_fn, prior_logdensity_fn = prior_model_fns()
fns = (prior_simulator_fn, prior_logdensity_fn), simulator_fn

optimizer = optax.adamw(1e-04)
snp = SNP(fns, make_model(2))
params, info = snp.fit(
random.PRNGKey(2),
y_observed,
n_rounds=3,
optimizer=optimizer,
n_early_stopping_patience=10,
batch_size=64,
n_atoms=10,
max_n_iter=100,
)

print(f"Took n={snp.n_total_simulations} simulations in total")
snp_samples, _ = snp.sample_posterior(params, 10000)
optimizer = optax.adam(1e-3)

data, params = None, {}
for i in range(2):
data, _ = snp.simulate_data_and_possibly_append(
jr.fold_in(jr.PRNGKey(1), i),
params=params,
observable=y_observed,
data=data,
)
params, info = snp.fit(
jr.fold_in(jr.PRNGKey(2), i),
data=data,
optimizer=optimizer,
)

rng_key = jr.PRNGKey(23)
snp_samples, _ = snp.sample_posterior(rng_key, params, y_observed)
fig, axes = plt.subplots(2)
for i, ax in enumerate(axes):
sns.histplot(snp_samples[:, i], color="darkblue", ax=ax)
Expand Down
147 changes: 0 additions & 147 deletions examples/slcp_smcabc.py

This file was deleted.

Loading