Skip to content

Commit

Permalink
[TestFailure] Resolving exceptions thrown across multiple GraphBolt
Browse files Browse the repository at this point in the history
… tests. (#7852)
  • Loading branch information
drivanov authored Jan 8, 2025
1 parent 275183b commit 540dd2b
Show file tree
Hide file tree
Showing 53 changed files with 301 additions and 248 deletions.
6 changes: 4 additions & 2 deletions dglgo/dglgo/apply_pipeline/graphpred/gen.py
Original file line number Diff line number Diff line change
Expand Up @@ -63,7 +63,7 @@ def config(
cpt: str = typer.Option(..., help="input checkpoint file path"),
):
# Training configuration
train_cfg = torch.load(cpt)["cfg"]
train_cfg = torch.load(cpt, weights_only=False)["cfg"]
if data is None:
print("data is not specified, use the training dataset")
data = train_cfg["data_name"]
Expand Down Expand Up @@ -119,7 +119,9 @@ def gen_script(cls, user_cfg_dict):
cls.user_cfg_cls(**user_cfg_dict)

# Training configuration
train_cfg = torch.load(user_cfg_dict["cpt_path"])["cfg"]
train_cfg = torch.load(user_cfg_dict["cpt_path"], weights_only=False)[
"cfg"
]

# Dict for code rendering
render_cfg = deepcopy(user_cfg_dict)
Expand Down
2 changes: 1 addition & 1 deletion dglgo/dglgo/apply_pipeline/graphpred/graphpred.jinja-py
Original file line number Diff line number Diff line change
Expand Up @@ -57,7 +57,7 @@ def main():
data to have the same number of input edge features, got {:d} and {:d}'.format(model_edge_feat_size, data_edge_feat_size)

model = {{ model_class_name }}(**cfg['model'])
model.load_state_dict(torch.load(cfg['cpt_path'], map_location='cpu')['model'])
model.load_state_dict(torch.load(cfg['cpt_path'], weights_only=False, map_location='cpu')['model'])
pred = infer(device, data_loader, model).detach().cpu()

# Dump the results
Expand Down
6 changes: 4 additions & 2 deletions dglgo/dglgo/apply_pipeline/nodepred/gen.py
Original file line number Diff line number Diff line change
Expand Up @@ -48,7 +48,7 @@ def config(
cpt: str = typer.Option(..., help="input checkpoint file path"),
):
# Training configuration
train_cfg = torch.load(cpt)["cfg"]
train_cfg = torch.load(cpt, weights_only=False)["cfg"]
if data is None:
print("data is not specified, use the training dataset")
data = train_cfg["data_name"]
Expand Down Expand Up @@ -101,7 +101,9 @@ def gen_script(cls, user_cfg_dict):
cls.user_cfg_cls(**user_cfg_dict)

# Training configuration
train_cfg = torch.load(user_cfg_dict["cpt_path"])["cfg"]
train_cfg = torch.load(user_cfg_dict["cpt_path"], weights_only=False)[
"cfg"
]

# Dict for code rendering
render_cfg = deepcopy(user_cfg_dict)
Expand Down
2 changes: 1 addition & 1 deletion dglgo/dglgo/apply_pipeline/nodepred/nodepred.jinja-py
Original file line number Diff line number Diff line change
Expand Up @@ -48,7 +48,7 @@ def main():
features, got {:d} and {:d}'.format(model_in_size, data_in_size)

model = {{ model_class_name }}(**cfg['model'])
model.load_state_dict(torch.load(cfg['cpt_path'], map_location='cpu')['model'])
model.load_state_dict(torch.load(cfg['cpt_path'], weights_only=False, map_location='cpu')['model'])
logits = infer(device, data, model)
pred = logits.argmax(dim=1).cpu()

Expand Down
6 changes: 4 additions & 2 deletions dglgo/dglgo/apply_pipeline/nodepred_sample/gen.py
Original file line number Diff line number Diff line change
Expand Up @@ -48,7 +48,7 @@ def config(
cpt: str = typer.Option(..., help="input checkpoint file path"),
):
# Training configuration
train_cfg = torch.load(cpt)["cfg"]
train_cfg = torch.load(cpt, weights_only=False)["cfg"]
if data is None:
print("data is not specified, use the training dataset")
data = train_cfg["data_name"]
Expand Down Expand Up @@ -101,7 +101,9 @@ def gen_script(cls, user_cfg_dict):
cls.user_cfg_cls(**user_cfg_dict)

# Training configuration
train_cfg = torch.load(user_cfg_dict["cpt_path"])["cfg"]
train_cfg = torch.load(user_cfg_dict["cpt_path"], weights_only=False)[
"cfg"
]

# Dict for code rendering
render_cfg = deepcopy(user_cfg_dict)
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -48,7 +48,7 @@ def main():
features, got {:d} and {:d}'.format(model_in_size, data_in_size)

model = {{ model_class_name }}(**cfg['model'])
model.load_state_dict(torch.load(cfg['cpt_path'], map_location='cpu')['model'])
model.load_state_dict(torch.load(cfg['cpt_path'], weights_only=False, map_location='cpu')['model'])
logits = infer(device, data, model)
pred = logits.argmax(dim=1).cpu()

Expand Down
2 changes: 1 addition & 1 deletion dglgo/dglgo/pipeline/graphpred/graphpred.jinja-py
Original file line number Diff line number Diff line change
Expand Up @@ -101,7 +101,7 @@ def main(run, cfg, data):
else:
lr_scheduler.step()

model.load_state_dict(torch.load(tmp_cpt_path))
model.load_state_dict(torch.load(tmp_cpt_path, weights_only=False))
os.remove(tmp_cpt_path)
test_metric = evaluate(device, test_loader, model)
print('Test Metric: {:.4f}'.format(test_metric))
Expand Down
2 changes: 1 addition & 1 deletion dglgo/dglgo/pipeline/nodepred/nodepred.jinja-py
Original file line number Diff line number Diff line change
Expand Up @@ -42,7 +42,7 @@ class EarlyStopping:
torch.save(model.state_dict(), self.checkpoint_path)

def load_checkpoint(self, model):
model.load_state_dict(torch.load(self.checkpoint_path))
model.load_state_dict(torch.load(self.checkpoint_path, weights_only=False))

def close(self):
os.remove(self.checkpoint_path)
Expand Down
2 changes: 1 addition & 1 deletion dglgo/dglgo/pipeline/nodepred_sample/nodepred-ns.jinja-py
Original file line number Diff line number Diff line change
Expand Up @@ -42,7 +42,7 @@ class EarlyStopping:
torch.save(model.state_dict(), self.checkpoint_path)

def load_checkpoint(self, model):
model.load_state_dict(torch.load(self.checkpoint_path))
model.load_state_dict(torch.load(self.checkpoint_path, weights_only=False))

def close(self):
os.remove(self.checkpoint_path)
Expand Down
4 changes: 3 additions & 1 deletion dglgo/dglgo/utils/early_stop.py
Original file line number Diff line number Diff line change
Expand Up @@ -34,4 +34,6 @@ def save_checkpoint(self, model):
torch.save(model.state_dict(), self.checkpoint_path)

def load_checkpoint(self, model):
model.load_state_dict(torch.load(self.checkpoint_path))
model.load_state_dict(
torch.load(self.checkpoint_path, weights_only=False)
)
4 changes: 3 additions & 1 deletion examples/pytorch/GNN-FiLM/main.py
Original file line number Diff line number Diff line change
Expand Up @@ -194,7 +194,9 @@ def main(args):
model.eval()
test_loss = []
test_f1 = []
model.load_state_dict(torch.load(os.path.join(args.save_dir, args.name)))
model.load_state_dict(
torch.load(os.path.join(args.save_dir, args.name), weights_only=False)
)
with torch.no_grad():
for batch in test_set:
g = batch.graph
Expand Down
4 changes: 3 additions & 1 deletion examples/pytorch/TAHIN/main.py
Original file line number Diff line number Diff line change
Expand Up @@ -111,7 +111,9 @@ def main(args):
# test use the best model
model.eval()
with torch.no_grad():
model.load_state_dict(torch.load("TAHIN" + "_" + args.dataset))
model.load_state_dict(
torch.load("TAHIN" + "_" + args.dataset, weights_only=False)
)
test_loss = []
test_acc = []
test_auc = []
Expand Down
2 changes: 1 addition & 1 deletion examples/pytorch/argo/main.py
Original file line number Diff line number Diff line change
Expand Up @@ -180,7 +180,7 @@ def train(

PATH = "model.pt"
if counter[0] != 0:
checkpoint = torch.load(PATH)
checkpoint = torch.load(PATH, weights_only=False)
model.load_state_dict(checkpoint["model_state_dict"])
opt.load_state_dict(checkpoint["optimizer_state_dict"])
epoch = checkpoint["epoch"]
Expand Down
4 changes: 3 additions & 1 deletion examples/pytorch/correct_and_smooth/main.py
Original file line number Diff line number Diff line change
Expand Up @@ -66,7 +66,9 @@ def main():
if args.pretrain:
print("---------- Before ----------")
model.load_state_dict(
torch.load(f"base/{args.dataset}-{args.model}.pt")
torch.load(
f"base/{args.dataset}-{args.model}.pt", weights_only=False
)
)
model.eval()

Expand Down
2 changes: 1 addition & 1 deletion examples/pytorch/dgi/train.py
Original file line number Diff line number Diff line change
Expand Up @@ -126,7 +126,7 @@ def main(args):

# train classifier
print("Loading {}th epoch".format(best_t))
dgi.load_state_dict(torch.load("best_dgi.pkl"))
dgi.load_state_dict(torch.load("best_dgi.pkl", weights_only=False))
embeds = dgi.encoder(features, corrupt=False)
embeds = embeds.detach()
mean = 0
Expand Down
6 changes: 4 additions & 2 deletions examples/pytorch/diffpool/train.py
Original file line number Diff line number Diff line change
Expand Up @@ -223,7 +223,8 @@ def graph_classify_task(prog_args):
+ "/"
+ prog_args.dataset
+ "/model.iter-"
+ str(prog_args.load_epoch)
+ str(prog_args.load_epoch),
weights_only=False,
)
)

Expand Down Expand Up @@ -334,7 +335,8 @@ def evaluate(dataloader, model, prog_args, logger=None):
+ "/"
+ prog_args.dataset
+ "/model.iter-"
+ str(logger["best_epoch"])
+ str(logger["best_epoch"]),
weights_only=False,
)
)
model.eval()
Expand Down
4 changes: 3 additions & 1 deletion examples/pytorch/dimenet/main.py
Original file line number Diff line number Diff line change
Expand Up @@ -238,7 +238,9 @@ def main(model_cnf):
if pretrain_params["flag"]:
torch_path = pretrain_params["path"]
target = model_params["targets"][0]
model.load_state_dict(torch.load(f"{torch_path}/{target}.pt"))
model.load_state_dict(
torch.load(f"{torch_path}/{target}.pt", weights_only=False)
)

logger.info("Testing with Pretrained model")
predictions, labels = evaluate(device, model, test_loader)
Expand Down
4 changes: 3 additions & 1 deletion examples/pytorch/gatv2/train.py
Original file line number Diff line number Diff line change
Expand Up @@ -178,7 +178,9 @@ def main(args):

print()
if args.early_stop:
model.load_state_dict(torch.load("es_checkpoint.pt"))
model.load_state_dict(
torch.load("es_checkpoint.pt", weights_only=False)
)
acc = evaluate(g, model, features, labels, test_mask)
print("Test Accuracy {:.4f}".format(acc))

Expand Down
5 changes: 4 additions & 1 deletion examples/pytorch/graphsaint/train_sampling.py
Original file line number Diff line number Diff line change
Expand Up @@ -214,7 +214,10 @@ def main(args, task):
# test
if args.use_val:
model.load_state_dict(
torch.load(os.path.join(log_dir, "best_model_{}.pkl".format(task)))
torch.load(
os.path.join(log_dir, "best_model_{}.pkl".format(task)),
weights_only=False,
)
)
if cpu_flag and cuda:
model = model.to("cpu")
Expand Down
2 changes: 1 addition & 1 deletion examples/pytorch/graphwriter/train.py
Original file line number Diff line number Diff line change
Expand Up @@ -161,7 +161,7 @@ def main(args):
model = GraphWriter(args)
model.to(args.device)
if args.test:
model = torch.load(args.save_model)
model = torch.load(args.save_model, weights_only=False)
model.args = args
print(model)
test(model, test_dataloader, args)
Expand Down
2 changes: 1 addition & 1 deletion examples/pytorch/han/utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -304,4 +304,4 @@ def save_checkpoint(self, model):

def load_checkpoint(self, model):
"""Load the latest checkpoint."""
model.load_state_dict(torch.load(self.filename))
model.load_state_dict(torch.load(self.filename, weights_only=False))
4 changes: 3 additions & 1 deletion examples/pytorch/hardgat/train.py
Original file line number Diff line number Diff line change
Expand Up @@ -154,7 +154,9 @@ def main(args):

print()
if args.early_stop:
model.load_state_dict(torch.load("es_checkpoint.pt"))
model.load_state_dict(
torch.load("es_checkpoint.pt", weights_only=False)
)
acc = evaluate(model, features, labels, test_mask)
print("Test Accuracy {:.4f}".format(acc))

Expand Down
4 changes: 3 additions & 1 deletion examples/pytorch/hilander/PSS/Smooth_AP/src/netlib.py
Original file line number Diff line number Diff line change
Expand Up @@ -71,7 +71,9 @@ def networkselect(opt):
raise Exception("Network {} not available!".format(opt.arch))

if opt.resume:
weights = torch.load(os.path.join(opt.save_path, opt.resume))
weights = torch.load(
os.path.join(opt.save_path, opt.resume), weights_only=False
)
weights_state_dict = weights["state_dict"]

if torch.cuda.device_count() > 1:
Expand Down
2 changes: 1 addition & 1 deletion examples/pytorch/hilander/PSS/test_subg_inat.py
Original file line number Diff line number Diff line change
Expand Up @@ -173,7 +173,7 @@
use_cluster_feat=args.use_cluster_feat,
use_focal_loss=args.use_focal_loss,
)
model.load_state_dict(torch.load(args.model_filename))
model.load_state_dict(torch.load(args.model_filename, weights_only=False))
model = model.to(device)
model.eval()

Expand Down
2 changes: 1 addition & 1 deletion examples/pytorch/hilander/test.py
Original file line number Diff line number Diff line change
Expand Up @@ -83,7 +83,7 @@
use_cluster_feat=args.use_cluster_feat,
use_focal_loss=args.use_focal_loss,
)
model.load_state_dict(torch.load(args.model_filename))
model.load_state_dict(torch.load(args.model_filename, weights_only=False))
model = model.to(device)
model.eval()

Expand Down
2 changes: 1 addition & 1 deletion examples/pytorch/hilander/test_subg.py
Original file line number Diff line number Diff line change
Expand Up @@ -104,7 +104,7 @@
use_cluster_feat=args.use_cluster_feat,
use_focal_loss=args.use_focal_loss,
)
model.load_state_dict(torch.load(args.model_filename))
model.load_state_dict(torch.load(args.model_filename, weights_only=False))
model = model.to(device)
model.eval()

Expand Down
2 changes: 1 addition & 1 deletion examples/pytorch/jtnn/vaetrain_dgl.py
Original file line number Diff line number Diff line change
Expand Up @@ -54,7 +54,7 @@ def worker_init_fn(id_):
model = DGLJTNNVAE(vocab, hidden_size, latent_size, depth)

if opts.model_path is not None:
model.load_state_dict(torch.load(opts.model_path))
model.load_state_dict(torch.load(opts.model_path, weights_only=False))
else:
for param in model.parameters():
if param.dim() == 1:
Expand Down
2 changes: 1 addition & 1 deletion examples/pytorch/lda/lda_model.py
Original file line number Diff line number Diff line change
Expand Up @@ -496,6 +496,6 @@ def doc_subgraph(G, doc_ids):
with io.BytesIO() as f:
model.save(f)
f.seek(0)
print(torch.load(f))
print(torch.load(f, weights_only=False))

print("Testing LatentDirichletAllocation passed!")
8 changes: 6 additions & 2 deletions examples/pytorch/ogb/ngnn_seal/main.py
Original file line number Diff line number Diff line change
Expand Up @@ -625,8 +625,12 @@ def print_log(*x, sep="\n", end="\n", mode="a"):
args.res_dir,
f"run{run+1}_optimizer_checkpoint{epoch}.pth",
)
model.load_state_dict(torch.load(model_name))
optimizer.load_state_dict(torch.load(optimizer_name))
model.load_state_dict(
torch.load(model_name, weights_only=False)
)
optimizer.load_state_dict(
torch.load(optimizer_name, weights_only=False)
)
tested[epoch] = (
test(final_val_loader, dataset.eval_metric)[
dataset.eval_metric
Expand Down
2 changes: 1 addition & 1 deletion examples/pytorch/ogb/ogbn-arxiv/correct_and_smooth.py
Original file line number Diff line number Diff line change
Expand Up @@ -179,7 +179,7 @@ def main():

for pred_file in glob.iglob(args.pred_files):
print("load:", pred_file)
pred = torch.load(pred_file)
pred = torch.load(pred_file, weights_only=False)
val_acc, test_acc = run(
args, graph, labels, pred, train_idx, val_idx, test_idx, evaluator
)
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -168,7 +168,7 @@ def main(args):
if num_patient_epochs == args["patience"]:
break

model.load_state_dict(torch.load(model_path))
model.load_state_dict(torch.load(model_path, weights_only=False))
train_score, val_score, test_score = run_an_eval_epoch(
graph, splitted_idx, model, evaluator
)
Expand Down
2 changes: 1 addition & 1 deletion examples/pytorch/ogb_lsc/MAG240M/train.py
Original file line number Diff line number Diff line change
Expand Up @@ -247,7 +247,7 @@ def test(args, dataset, g, feats, paper_offset):
0.5,
"paper",
).cuda()
model.load_state_dict(torch.load(args.model_path))
model.load_state_dict(torch.load(args.model_path, weights_only=False))

model.eval()
correct = total = 0
Expand Down
2 changes: 1 addition & 1 deletion examples/pytorch/ogb_lsc/MAG240M/train_multi_gpus.py
Original file line number Diff line number Diff line change
Expand Up @@ -304,7 +304,7 @@ def test(args, dataset, g, feats, paper_offset):
).cuda()

# load ddp's model parameters, we need to remove the name of 'module.'
state_dict = torch.load(args.model_path)
state_dict = torch.load(args.model_path, weights_only=False)
new_state_dict = OrderedDict()
for k, v in state_dict.items():
name = k[7:]
Expand Down
2 changes: 1 addition & 1 deletion examples/pytorch/ogb_lsc/PCQM4M/test_inference.py
Original file line number Diff line number Diff line change
Expand Up @@ -206,7 +206,7 @@ def main():
raise RuntimeError(f"Checkpoint file not found at {checkpoint_path}")

## reading in checkpoint
checkpoint = torch.load(checkpoint_path)
checkpoint = torch.load(checkpoint_path, weights_only=False)
model.load_state_dict(checkpoint["model_state_dict"])

print("Predicting on test data...")
Expand Down
4 changes: 3 additions & 1 deletion examples/pytorch/pointcloud/bipointnet/train_cls.py
Original file line number Diff line number Diff line change
Expand Up @@ -136,7 +136,9 @@ def evaluate(net, test_loader, dev):

net = net.to(dev)
if args.load_model_path:
net.load_state_dict(torch.load(args.load_model_path, map_location=dev))
net.load_state_dict(
torch.load(args.load_model_path, weights_only=False, map_location=dev)
)

opt = optim.Adam(net.parameters(), lr=1e-3, weight_decay=1e-4)

Expand Down
4 changes: 3 additions & 1 deletion examples/pytorch/pointcloud/edgeconv/main.py
Original file line number Diff line number Diff line change
Expand Up @@ -115,7 +115,9 @@ def evaluate(model, test_loader, dev):
model = Model(20, [64, 64, 128, 256], [512, 512, 256], 40)
model = model.to(dev)
if args.load_model_path:
model.load_state_dict(torch.load(args.load_model_path, map_location=dev))
model.load_state_dict(
torch.load(args.load_model_path, weights_only=False, map_location=dev)
)

opt = optim.SGD(model.parameters(), lr=0.1, momentum=0.9, weight_decay=1e-4)

Expand Down
Loading

0 comments on commit 540dd2b

Please sign in to comment.