Skip to content

Commit

Permalink
Improve DMatrix creation performance in python
Browse files Browse the repository at this point in the history
The xgboost python python package serializes numpy arrays as json.
This has non trivial overhead for small datasets.

This patch optimizes the specific case where the numpy is already in
"C" contigous 32-bit floating point format, and has rows*cols<=32768,
and loads it directly without the json layer.
xgboost/tests/python/microbench_numpy.py:

Threads  | Rows     | Cols     | Current (sec)   | Optimized (sec) | Ratio
       1 |        1 |     1000 |       0.0001921 |       0.0001703 |        88.6%
       1 |        4 |     1000 |       0.0001689 |       0.0001437 |        85.1%
       1 |       16 |     1000 |       0.0002639 |       0.0002457 |        93.1%
       1 |       64 |     1000 |       0.0006843 |       0.0006719 |        98.2%
       1 |      256 |     1000 |        0.002611 |        0.002655 |       101.7%
       1 |     1024 |     1000 |           0.013 |          0.0126 |        97.0%
       1 |     4096 |     1000 |         0.06081 |          0.0593 |        97.5%
       1 |    16384 |     1000 |          0.2981 |          0.2974 |        99.8%
       2 |        1 |     1000 |       0.0001415 |       0.0001196 |        84.6%
       2 |        4 |     1000 |       0.0002155 |       0.0002003 |        93.0%
       2 |       16 |     1000 |       0.0002137 |        0.000196 |        91.7%
       2 |       64 |     1000 |       0.0005054 |       0.0004855 |        96.1%
       2 |      256 |     1000 |        0.001613 |        0.001687 |       104.6%
       2 |     1024 |     1000 |        0.007743 |        0.008194 |       105.8%
       2 |     4096 |     1000 |         0.03791 |         0.03783 |        99.8%
       2 |    16384 |     1000 |          0.2077 |          0.2037 |        98.1%
       4 |        1 |     1000 |       0.0001374 |       0.0001237 |        90.0%
       4 |        4 |     1000 |       0.0001985 |       0.0001621 |        81.7%
       4 |       16 |     1000 |       0.0002266 |       0.0001988 |        87.7%
       4 |       64 |     1000 |       0.0005175 |       0.0004775 |        92.3%
       4 |      256 |     1000 |         0.00166 |        0.001594 |        96.0%
       4 |     1024 |     1000 |        0.008257 |        0.008097 |        98.1%
       4 |     4096 |     1000 |         0.03492 |          0.0354 |       101.4%
       4 |    16384 |     1000 |          0.1896 |          0.1897 |       100.0%
       8 |        1 |     1000 |       0.0001471 |       0.0001254 |        85.3%
       8 |        4 |     1000 |       0.0003609 |        0.000326 |        90.4%
       8 |       16 |     1000 |       0.0002651 |       0.0002217 |        83.6%
       8 |       64 |     1000 |       0.0003504 |       0.0003064 |        87.5%
       8 |      256 |     1000 |       0.0008264 |       0.0008729 |       105.6%
       8 |     1024 |     1000 |        0.003367 |        0.003127 |        92.9%
       8 |     4096 |     1000 |         0.01932 |         0.01799 |        93.1%
       8 |    16384 |     1000 |          0.1245 |          0.1208 |        97.0%
  • Loading branch information
arieleizenberg committed Jun 11, 2024
1 parent 0c44067 commit cdac476
Show file tree
Hide file tree
Showing 3 changed files with 120 additions and 10 deletions.
33 changes: 23 additions & 10 deletions python-package/xgboost/data.py
Original file line number Diff line number Diff line change
Expand Up @@ -252,17 +252,30 @@ def _from_numpy_array(
_check_data_shape(data)
data, _ = _ensure_np_dtype(data, data.dtype)
handle = ctypes.c_void_p()
_check_call(
_LIB.XGDMatrixCreateFromDense(
_array_interface(data),
make_jcargs(
missing=float(missing),
nthread=int(nthread),
data_split_mode=int(data_split_mode),
),
ctypes.byref(handle),
if isinstance(data, np.ndarray) and data.dtype == np.float32 and data.flags['C_CONTIGUOUS'] and data.size <= 32768:
_check_call(
_LIB.XGDMatrixCreateFromMat_omp(
data.ctypes.data_as(ctypes.POINTER(ctypes.c_float)),
c_bst_ulong(data.shape[0]),
c_bst_ulong(data.shape[1]),
ctypes.c_float(float(missing)),
ctypes.byref(handle),
ctypes.c_int(nthread),
ctypes.c_int(data_split_mode),
)
)
else:
_check_call(
_LIB.XGDMatrixCreateFromDense(
_array_interface(data),
make_jcargs(
missing=float(missing),
nthread=int(nthread),
data_split_mode=int(data_split_mode),
),
ctypes.byref(handle),
)
)
)
return handle, feature_names, feature_types


Expand Down
56 changes: 56 additions & 0 deletions tests/python/microbench_numpy.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,56 @@
import numpy as np
import xgboost as xgb
from collections import defaultdict
import timeit
import ctypes
from xgboost.core import _LIB, DataSplitMode
from xgboost.data import _check_call, _array_interface, c_bst_ulong, make_jcargs

def measure_create_dmatrix(rows, cols, nthread, use_optimization):
data = np.random.randn(rows, cols).astype(np.float32)
data = np.ascontiguousarray(data)

handle = ctypes.c_void_p()
missing = np.nan

start = timeit.default_timer()
if use_optimization:
_LIB.XGDMatrixCreateFromMat_omp(
data.ctypes.data_as(ctypes.POINTER(ctypes.c_float)),
c_bst_ulong(data.shape[0]),
c_bst_ulong(data.shape[1]),
ctypes.c_float(missing),
ctypes.byref(handle),
ctypes.c_int(nthread),
ctypes.c_int(DataSplitMode.ROW),
)
else:
_LIB.XGDMatrixCreateFromDense(
_array_interface(data),
make_jcargs(
missing=float(missing),
nthread=int(nthread),
data_split_mode=int(DataSplitMode.ROW),
),
ctypes.byref(handle),
)
end = timeit.default_timer()
return end - start

COLS = 1000

print(f"{'Threads':8} | {'Rows':8} | {'Cols':8} | {'Current (sec)':15} | {'Optimized (sec)':15} | {'Ratio':12}")

for nthread in [1, 2, 4, 8]:
for rows in [1, 4, 16, 64, 256, 1024, 4096, 16384]:
repeats = 65536 // rows

current = 0
for i in range(repeats):
current += measure_create_dmatrix(rows=rows, cols=COLS, nthread=nthread, use_optimization=False)

optimized = 0
for i in range(repeats):
optimized += measure_create_dmatrix(rows=rows, cols=COLS, nthread=nthread, use_optimization=True)

print(f"{nthread:8} | {rows:8} | {COLS:8} | {current/repeats:15.4g} | {optimized/repeats:15.4g} | {optimized / current:12.1%}")
41 changes: 41 additions & 0 deletions tests/python/test_basic.py
Original file line number Diff line number Diff line change
Expand Up @@ -210,6 +210,47 @@ def test_dmatrix_numpy_init_omp(self):
assert dm.num_row() == row
assert dm.num_col() == cols

def _test_dmatrix_numpy_init_omp_contiguous(self, test_contiguous: bool):
rows = [1000, 11326, 15000]
cols = 50
for row in rows:
X = np.random.randn(row, cols)
y = np.random.randn(row).astype("f")

# Ensure data is contiguous
if test_contiguous:
X = np.ascontiguousarray(X).astype(np.float32)
y = np.ascontiguousarray(y).astype(np.float32)
assert X.flags['C_CONTIGUOUS']
else:
X = np.asfortranarray(X)
y = np.asfortranarray(y)
assert not X.flags['C_CONTIGUOUS']

dm = xgb.DMatrix(X, y, nthread=0)
np.testing.assert_allclose(dm.get_data().toarray(), X, rtol=1e-7)
np.testing.assert_array_equal(dm.get_label(), y)
assert dm.num_row() == row
assert dm.num_col() == cols

dm = xgb.DMatrix(X, y, nthread=1)
np.testing.assert_allclose(dm.get_data().toarray(), X, rtol=1e-7)
np.testing.assert_array_equal(dm.get_label(), y)
assert dm.num_row() == row
assert dm.num_col() == cols

dm = xgb.DMatrix(X, y, nthread=10)
np.testing.assert_allclose(dm.get_data().toarray(), X, rtol=1e-7)
np.testing.assert_array_equal(dm.get_label(), y)
assert dm.num_row() == row
assert dm.num_col() == cols

def test_dmatrix_numpy_init_omp_contiguous(self):
return self._test_dmatrix_numpy_init_omp_contiguous(True)

def test_dmatrix_numpy_init_omp_not_contiguous(self):
return self._test_dmatrix_numpy_init_omp_contiguous(False)

def test_cv(self):
dm, _ = tm.load_agaricus(__file__)
params = {"max_depth": 2, "eta": 1, "objective": "binary:logistic"}
Expand Down

0 comments on commit cdac476

Please sign in to comment.