-
Notifications
You must be signed in to change notification settings - Fork 0
dmu1313/Dota-2-Outcome-Predictor
Folders and files
Name | Name | Last commit message | Last commit date | |
---|---|---|---|---|
Repository files navigation
# Dota-2-Outcome-Predictor ML application developed for CSE 353 at Stony Brook University to predict the winning team of a Dota 2 game based on certain features. Developed by Daniel Mu along with Jeremy Chu ///////////////////////////////////////////////////////////////// NAME: perceptron.py - Predict using a Perceptron algorithm SYNOPSIS: perceptron.py [-h] --mode train|test [--model model] [-i iterations] [-f folds] data DESCRIPTION: Predict using a Perceptron algorithm Can be used either in training mode or test mode. Training mode will train a model and output it to perceptronmodel.csv in the directory where perceptron.py is. Testing mode will test the input model on the given data. positional arguments: data data to be evaluated/trained on. Data must be in a csv file format optional arguments: -h, --help show this help message and exit --mode train|test select the mode (train/test) --model model model to test with (will be ignored if train is selected as the mode) -i iterations number of iterations to run. Default value is 10 -f folds number of folds to use for cross-validation. Default value is 10 EXAMPLES: python perceptron.py --mode train Train.csv will train on 10 folds for 10 iterations each using data from Train.csv. python perceptron.py --mode train -i 12 -f 8 Train.csv will train on 8 folds for 12 iterations each using data from Train.csv. python perceptron.py --mode test --model perceptronmodel.csv Test.csv will evaluate the model on the given test data set. NAME: linreg.py - Predict using Linear Regression SYNOPSIS: linreg.py [-h] --mode train|test [--model model] [-f folds] data DESCRIPTION: Predict using Linear Regression Can be used either in training mode or test mode. Training mode will train a model and output it to linregmodel.csv in the directory where linreg.py is. Testing mode will test the input model on the given data. positional arguments: data data to be evaluated/trained on. Data must be in a csv file format optional arguments: -h, --help show this help message and exit --mode train|test select the mode (train/test) --model model model to test with (will be ignored if train is selected as the mode) -f folds number of folds to use for cross-validation. Default value is 10 EXAMPLES: python linreg.py --mode train Train.csv will train on 10 folds using data from Train.csv. python linreg.py --mode train -f 8 Train.csv will train on 8 folds using data from Train.csv. python linreg.py --mode test --model linregmodel.csv Test.csv will evaluate the model on the given test data set.
About
ML application developed for CSE 353 at Stony Brook University to predict the winning team of a Dota 2 game based on certain features.
Resources
Stars
Watchers
Forks
Releases
No releases published
Packages 0
No packages published