Build a classifier to classsification transport using sift, bag of words and svm
Root/
data # Data contains total 1854 image of 5 classes: bus, car, moto, pedestrian
data_loader.py # Imread image and label for data
sift_extractors.py # Extract features with SIFT and Build Bag of Word
build_model.py # Build model SVM and training
gridSearchCV # implement GridSearchCV find Hyper-params
- Number of centroid in Kmean: 60
- Penalty parameter C of the error term in SVM: 30
- 'moto': 0
- 'car': 1
- 'pedestrian': 2
- 'truck': 3
- 'bus': 4
- Statistics All Classes
- Statistics Classes
- Accuracy score: 72.9% - test size: 0.2
- Best params
'clf__C': 5,
'clf__gamma': 0.01,
'clf__kernel': 'rbf'
- Accuracy: 75.72% +/-1.52%
- opencv-contrib-python==3.4.2.16
- opencv-python==3.4.2.16