Skip to content

Robust learning on ISIC 2018, based on Learning with Noisy Labels via Sparse Regularization (ICCV 2021).

Notifications You must be signed in to change notification settings

e-wxy/NL-Sparse-Regularization

 
 

Repository files navigation

ISIC 2018 | Learning with Noisy Labels via Sparse Regularization

Robust learning on ISIC 20181, based on Learning with Noisy Labels via Sparse Regularization (ICCV 2021)2.

Experiments

Settings

  1. Noise Corruption: a clean label y is flipped into a random noisy version $y ̃ $with probability $η(x,y ̃) = p(y ̃|y, x)$

    • Symmetric: with equal probability $η/6$

    • Asymmetric: NV↔MEL, BCC↔BKL, VASC↔DF, AKIEC↔DF

    • $η = 0, 0.1, 0.4$

  2. Loss Function

    a) Focal Loss $$ \mathrm{FL}\left(p,\ y\right)=-\sum_{t=1}^{n}{y_t\left(1-p_t\right)^\gamma\log{\left(p_t\right)}} $$

    where $γ=0.5$

    b) Focal Loss + SR $$ \mathrm{FLSR}\left(p,\ y\right)=-\sum_{t=1}^{n}{y_t\left(1-p_t\right)^\gamma\log{\left(p_t\right)}}+\lambda |p_t|_p^p $$

    where $p=\frac{exp{\left(\frac{z_i}{\tau}\right)}}{\sum_{j=1}^{n}exp{\left(\frac{z_j}{\tau}\right)}},\ \tau=0.5,\lambda_t=5・ 1.005^{t/1}$

    c) GCE3 $$ \mathrm{GCEL}\left(p,y\right)=\sum_{t=1}^{n}{y_t\frac{\left(1-p_t^q\right)}{q}} $$

    where $p=0.7$

Results

AUC
Noise Type None Asymmetric Symmetric Asymmetric Symmetric
𝜂 0 0.1 0.4
Focal Loss 0.9856 0.9766 0.9691 0.9235 0.9224
Focal Loss + SR 0.9854 0.9778 0.9725 0.9443 0.9517
GCE 0.9837 0.9804 0.9789 0.9256 0.9674
ACC
Noise Type None Asymmetric Symmetric Asymmetric Symmetric
𝜂 0 0.1 0.4
Focal Loss 0.855 0.817 0.803 0.573 (0.691) 0.683 (0.782)
Focal Loss + SR 0.853 0.821 0.829 0.700 (0.720) 0.784 (0.776)
GCE 0.851 0.826 0.827 0.605 (0.702) 0.782(0.798)

(): the best model on validation set

Training Process

Loss Function

Noise Type

Under Adversarial Attacks

The robustness of aforementioned models under adversarial attacks is also tested.

Trained with sparse regularization, the model is relatively robust against perturbations.

Training Method Accuracy
Clean Gaussian FGSM PGD
FL 0.855 0.675 0.287 0.000
FL+SR 0.853 0.745 0.309 0.000
GCE 0.851 0.698 0.243 0.000

While trained on dataset containing hand-crafted noisy labels, the model gets higher accuracy under adversarial attacks.

Noisy Labels Accuracy
Clean Gaussian FGSM PGD
Clean 0.853 0.745 0.309 0.000
0.1 Asymmetric 0.826 0.673 0.230 0.000
0.1 Symmetric 0.829 0.726 0.381 0.000
0.4 Asymmetric 0.700 0.599 0.291 0.000
0.4 Symmetric 0.784 0.716 0.417 0.000

References

Footnotes

  1. HAM10000 Dataset: (c) by ViDIR Group, Department of Dermatology, Medical University of Vienna; https://doi.org/10.1038/sdata.2018.161

  2. X. Zhou, X. Liu, C. Wang, D. Zhai, J. Jiang and X. Ji, "Learning with Noisy Labels via Sparse Regularization," 2021 IEEE/CVF International Conference on Computer Vision (ICCV), 2021, pp. 72-81, doi: 10.1109/ICCV48922.2021.00014.

  3. Zhang, Zhilu, and Mert Sabuncu. ‘Generalized Cross Entropy Loss for Training Deep Neural Networks with Noisy Labels’. In Advances in Neural Information Processing Systems, Vol. 31. Curran Associates, Inc., 2018. https://proceedings.neurips.cc/paper/2018/hash/f2925f97bc13ad2852a7a551802feea0-Abstract.html.

About

Robust learning on ISIC 2018, based on Learning with Noisy Labels via Sparse Regularization (ICCV 2021).

Topics

Resources

Stars

Watchers

Forks

Languages

  • Jupyter Notebook 53.0%
  • Python 47.0%