Skip to content

Commit

Permalink
#59 update vignette to reflect #104 updates
Browse files Browse the repository at this point in the history
  • Loading branch information
egouldo committed Aug 12, 2024
1 parent 824ffa0 commit 1746fbf
Showing 1 changed file with 40 additions and 8 deletions.
48 changes: 40 additions & 8 deletions vignettes/data_cleaning_preparation.Rmd
Original file line number Diff line number Diff line change
Expand Up @@ -68,42 +68,74 @@ Note that if any of `beta_estimate`, `beta_SE` or `adjusted_df` are missing, `st
Below we standardise a data frame containing out-of-sample point-estimate predictions, which are stored in a list-column of dataframes, called `augmented_data`, notice some additional console messages about back-transformations, as well as an additional step *Transforming out of sample predictions from link to response scale*. That's because, depending on what `estimate_type` is being standardised, a different workflow will be implemented by `standardise_response()`.

```{r demo_standardise_response_yi}
data("ManyEcoEvo_yi")
# ----- Create example blue tit dataset ----
data("ManyEcoEvo_yi")
blue_tit_predictions <-
ManyEcoEvo_yi %>%
dplyr::filter(dataset == "blue tit") %>%
pluck("data", 1) %>%
slice(1:5)
head()
# ----- back-transform analyst estimates to original response scale ----
blue_tit_back_transformed <-
blue_tit_predictions %>%
back_transform_response_vars_yi(estimate_type = "yi",
dataset = "blue tit") %>%
ungroup %>%
select(
id_col,
response_variable_name,
contains("transformation"),
augmented_data,
back_transformed_data
) #TODO transformation column seems wrong! but output from convert_predictions() suggests correct transformation occured!
blue_tit_back_transformed
# ----- standardize to Z scale ------
blue_tit_standardised <-
blue_tit_back_transformed %>%
standardise_response(
dat = blue_tit_predictions,
estimate_type = "yi" ,
param_table = ManyEcoEvo:::analysis_data_param_tables,
dataset = "blue tit"
) %>%
) %>%
ungroup %>%
select(
id_col,
params,
contains("transformation"),
transformation,
augmented_data,
back_transformed_data
)
blue_tit_standardised
# ----- parameters ----
blue_tit_standardised %>% pluck("params", 1)
blue_tit_standardised %>% pluck("params", 2) # gets a different set depending on the variable
# ---- raw predictions data ----
blue_tit_back_transformed %>% pluck("augmented_data", 1)
blue_tit_back_transformed %>% pluck("back_transformed_data", 1)
# ---- back-transformed & standardised predictions_data ----
blue_tit_standardised %>% pluck("back_transformed_data", 1)
MA_data_yi <- blue_tit_standardised %>%
select(id_col, back_transformed_data) %>%
unnest(back_transformed_data) %>%
pointblank::col_vals_between(columns = "Z", left = -3, right = 3, inclusive = TRUE)
```

### Standardising effect-sizes to $Z_r$ {#sec-standardisation}

- Standardisation of effect-sizes (fishers' Z), however other transformations could be applied using other packages if need be (Gurrindgi green meta-analsis handbook).

<!-- -->

- Coefficients
- `est_to_Zr()`
- Coefficients `est_to_Zr()`

### Standardising out-of-sample predictions to $Z_{y_i}$

Expand Down

0 comments on commit 1746fbf

Please sign in to comment.