-
Notifications
You must be signed in to change notification settings - Fork 0
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Collinearity subset analysis does not subset correct list-column of df's #40
Comments
But when I try to tar_make() library(ManyEcoEvo)
library(tidyverse)
a <-
ManyEcoEvo %>%
prepare_response_variables(estimate_type = "Zr") |>
generate_exclusion_subsets(estimate_type = "Zr") |>
generate_rating_subsets() |>
generate_expertise_subsets(ManyEcoEvo:::expert_subset)
#>
#> ── Applying exclusion rules and generating exclusion subsets ───────────────────
#>
#> ── Computing meta-analysis inputsfor estimate type Zr ──────────────────────────
#>
#> ── Computing standardised effect sizes `Zr` and variance `VZr` ──
#>
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df 484.0193.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df 666.56874.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df 590.18263.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.006225,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.003996,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df 481.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.09247,
#> 3. adjusted_df 316.17526.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.029,
#> 3. adjusted_df 366.3.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.042,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.01416305,
#> 3. adjusted_df 257.905.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.030382264,
#> 3. adjusted_df 2372.82.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.01409,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.008781,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.014853,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.000769,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.033978443,
#> 3. adjusted_df 347.4992526.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.01823188,
#> 3. adjusted_df 55.44391.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.02039768,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.02496,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.03575,
#> 3. adjusted_df NA.
#>
#> ── Computing meta-analysis inputsfor estimate type Zr ──────────────────────────
#>
#> ── Computing standardised effect sizes `Zr` and variance `VZr` ──
#>
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.29212,
#> 3. adjusted_df 21.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.007831,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.07216,
#> 3. adjusted_df 0.560867697.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.57,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.2328,
#> 3. adjusted_df 343.24787.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.3188723,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.0059286,
#> 3. adjusted_df 1.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.007385,
#> 3. adjusted_df 3.5e-25.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.052462,
#> 3. adjusted_df 3.5e-25.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.605,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 8.98,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 7.97,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 5.19,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 18.5,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 5.92,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.529,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 2.89,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.605,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.01312667,
#> 3. adjusted_df -2.6269353.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.197,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.192,
#> 3. adjusted_df 82.703.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.1,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.0048042,
#> 3. adjusted_df 341.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.21,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.5756016,
#> 3. adjusted_df 3.536992.
#> Joining with `by = join_by(id_col, dataset)`
#> Joining with `by = join_by(id_col, dataset)`
#> Joining with `by = join_by(id_col, dataset)`
#> Joining with `by = join_by(id_col, dataset)`
#> Joining with `by = join_by(id_col)`
#> Joining with `by = join_by(id_col)`
#> Joining with `by = join_by(id_col)`
#> Joining with `by = join_by(id_col)`
#> Joining with `by = join_by(id_col)`
#> Joining with `by = join_by(id_col)`
#> Joining with `by = join_by(id_col)`
#> Joining with `by = join_by(id_col)`
#> Joining with `by = join_by(response_id)`
#> Joining with `by = join_by(response_id)`
#> Joining with `by = join_by(id_col, dataset)`
#> Joining with `by = join_by(id_col, dataset)` a %>% generate_collinearity_subset(ManyEcoEvo:::collinearity_subset)
#> Error in `mutate()`:
#> ℹ In argument: `effects_analysis = map(...)`.
#> ℹ In group 1: `dataset = "blue tit"`, `exclusion_set = "complete"`,
#> `estimate_type = "Zr"`.
#> Caused by error:
#> ! object 'effects_analysis' not found Created on 2024-06-14 with reprex v2.1.0 |
Rebuilt pkg after f242965 and reran reprex, passes now, so def a downstream issue from library(ManyEcoEvo)
library(tidyverse)
a <-
ManyEcoEvo %>%
prepare_response_variables(estimate_type = "Zr") |>
generate_exclusion_subsets(estimate_type = "Zr") |>
generate_rating_subsets() |>
generate_expertise_subsets(ManyEcoEvo:::expert_subset)
#>
#> ── Applying exclusion rules and generating exclusion subsets ───────────────────
#>
#> ── Computing meta-analysis inputsfor estimate type Zr ──────────────────────────
#>
#> ── Computing standardised effect sizes `Zr` and variance `VZr` ──
#>
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df 484.0193.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df 666.56874.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df 590.18263.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.006225,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.003996,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df 481.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.09247,
#> 3. adjusted_df 316.17526.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.029,
#> 3. adjusted_df 366.3.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.042,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.01416305,
#> 3. adjusted_df 257.905.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.030382264,
#> 3. adjusted_df 2372.82.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.01409,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.008781,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.014853,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.000769,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.033978443,
#> 3. adjusted_df 347.4992526.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.01823188,
#> 3. adjusted_df 55.44391.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.02039768,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.02496,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.03575,
#> 3. adjusted_df NA.
#>
#> ── Computing meta-analysis inputsfor estimate type Zr ──────────────────────────
#>
#> ── Computing standardised effect sizes `Zr` and variance `VZr` ──
#>
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.29212,
#> 3. adjusted_df 21.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.007831,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.07216,
#> 3. adjusted_df 0.560867697.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.57,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.2328,
#> 3. adjusted_df 343.24787.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.3188723,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.0059286,
#> 3. adjusted_df 1.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.007385,
#> 3. adjusted_df 3.5e-25.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.052462,
#> 3. adjusted_df 3.5e-25.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.605,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 8.98,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 7.97,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 5.19,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 18.5,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 5.92,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.529,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 2.89,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.605,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.01312667,
#> 3. adjusted_df -2.6269353.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.197,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.192,
#> 3. adjusted_df 82.703.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.1,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.0048042,
#> 3. adjusted_df 341.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.21,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.5756016,
#> 3. adjusted_df 3.536992.
#> Joining with `by = join_by(id_col, dataset)`
#> Joining with `by = join_by(id_col, dataset)`
#> Joining with `by = join_by(id_col, dataset)`
#> Joining with `by = join_by(id_col, dataset)`
#> Joining with `by = join_by(id_col)`
#> Joining with `by = join_by(id_col)`
#> Joining with `by = join_by(id_col)`
#> Joining with `by = join_by(id_col)`
#> Joining with `by = join_by(id_col)`
#> Joining with `by = join_by(id_col)`
#> Joining with `by = join_by(id_col)`
#> Joining with `by = join_by(id_col)`
#> Joining with `by = join_by(response_id)`
#> Joining with `by = join_by(response_id)`
#> Joining with `by = join_by(id_col, dataset)`
#> Joining with `by = join_by(id_col, dataset)` a %>% generate_collinearity_subset(ManyEcoEvo:::collinearity_subset)
#> # A tibble: 15 × 8
#> # Groups: dataset, exclusion_set, estimate_type [4]
#> dataset exclusion_set estimate_type data diversity_data
#> <chr> <chr> <chr> <named list> <named list>
#> 1 blue tit complete Zr <tibble [131 × 40]> <tibble>
#> 2 eucalyptus complete Zr <tibble [79 × 40]> <tibble [79 × 61]>
#> 3 blue tit partial Zr <tibble [118 × 40]> <tibble>
#> 4 eucalyptus partial Zr <tibble [70 × 40]> <tibble [70 × 61]>
#> 5 blue tit complete Zr <tibble [109 × 6]> <tibble>
#> 6 blue tit complete Zr <tibble [32 × 6]> <tibble [32 × 54]>
#> 7 eucalyptus complete Zr <tibble [55 × 6]> <tibble [55 × 61]>
#> 8 eucalyptus complete Zr <tibble [13 × 6]> <tibble [13 × 61]>
#> 9 blue tit partial Zr <tibble [100 × 6]> <tibble>
#> 10 blue tit partial Zr <tibble [32 × 6]> <tibble [32 × 54]>
#> 11 eucalyptus partial Zr <tibble [52 × 6]> <tibble [52 × 61]>
#> 12 eucalyptus partial Zr <tibble [10 × 6]> <tibble [10 × 61]>
#> 13 blue tit complete Zr <tibble [89 × 40]> <tibble [89 × 54]>
#> 14 eucalyptus complete Zr <tibble [34 × 40]> <tibble [34 × 61]>
#> 15 blue tit complete Zr <tibble [117 × 40]> <tibble>
#> # ℹ 3 more variables: publishable_subset <chr>, expertise_subset <chr>,
#> # collinearity_subset <chr> Created on 2024-06-14 with reprex v2.1.0 |
OK, error is coming from library(ManyEcoEvo)
library(tidyverse)
pull_df <- function(x,y){
x %>%
filter(dataset == "blue tit",
publishable_subset == "All",
expertise_subset == "All",
exclusion_set == "complete") %>%
pull({{y}})
}
a <-
ManyEcoEvo %>%
prepare_response_variables(estimate_type = "Zr") |>
generate_exclusion_subsets(estimate_type = "Zr") |>
generate_rating_subsets() |>
generate_expertise_subsets(ManyEcoEvo:::expert_subset) %>%
generate_collinearity_subset(ManyEcoEvo:::collinearity_subset)
#>
#> ── Applying exclusion rules and generating exclusion subsets ───────────────────
#>
#> ── Computing meta-analysis inputsfor estimate type Zr ──────────────────────────
#>
#> ── Computing standardised effect sizes `Zr` and variance `VZr` ──
#>
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df 484.0193.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df 666.56874.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df 590.18263.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.006225,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.003996,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df 481.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.09247,
#> 3. adjusted_df 316.17526.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.029,
#> 3. adjusted_df 366.3.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.042,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.01416305,
#> 3. adjusted_df 257.905.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.030382264,
#> 3. adjusted_df 2372.82.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.01409,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.008781,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.014853,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.000769,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.033978443,
#> 3. adjusted_df 347.4992526.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.01823188,
#> 3. adjusted_df 55.44391.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.02039768,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.02496,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.03575,
#> 3. adjusted_df NA.
#>
#> ── Computing meta-analysis inputsfor estimate type Zr ──────────────────────────
#>
#> ── Computing standardised effect sizes `Zr` and variance `VZr` ──
#>
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.29212,
#> 3. adjusted_df 21.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.007831,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.07216,
#> 3. adjusted_df 0.560867697.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.57,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.2328,
#> 3. adjusted_df 343.24787.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.3188723,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.0059286,
#> 3. adjusted_df 1.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.007385,
#> 3. adjusted_df 3.5e-25.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.052462,
#> 3. adjusted_df 3.5e-25.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.605,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 8.98,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 7.97,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 5.19,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 18.5,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 5.92,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.529,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 2.89,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.605,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.01312667,
#> 3. adjusted_df -2.6269353.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.197,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.192,
#> 3. adjusted_df 82.703.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.1,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.0048042,
#> 3. adjusted_df 341.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.21,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.5756016,
#> 3. adjusted_df 3.536992.
#> Joining with `by = join_by(id_col, dataset)`
#> Joining with `by = join_by(id_col, dataset)`
#> Joining with `by = join_by(id_col, dataset)`
#> Joining with `by = join_by(id_col, dataset)`
#> Joining with `by = join_by(id_col)`
#> Joining with `by = join_by(id_col)`
#> Joining with `by = join_by(id_col)`
#> Joining with `by = join_by(id_col)`
#> Joining with `by = join_by(id_col)`
#> Joining with `by = join_by(id_col)`
#> Joining with `by = join_by(id_col)`
#> Joining with `by = join_by(id_col)`
#> Joining with `by = join_by(response_id)`
#> Joining with `by = join_by(response_id)`
#> Joining with `by = join_by(id_col, dataset)`
#> Joining with `by = join_by(id_col, dataset)` b <-
a %>%
compute_MA_inputs(estimate_type = "Zr")
#> Joining with `by = join_by(id_col, num_variables)`
#> Joining with `by = join_by(id_col)`
#> Joining with `by = join_by(id_col)`
#> Joining with `by = join_by(id_col, num_variables)`
#> Joining with `by = join_by(id_col, num_variables)`
#> Joining with `by = join_by(id_col, num_variables)`
#> Joining with `by = join_by(id_col)`
#> Joining with `by = join_by(id_col)`
#> Joining with `by = join_by(id_col, num_variables)`
#> Joining with `by = join_by(id_col)`
#> Joining with `by = join_by(id_col)`
#> Joining with `by = join_by(id_col, num_variables)`
#> Joining with `by = join_by(id_col, num_variables)`
#> Joining with `by = join_by(id_col)`
#> Joining with `by = join_by(id_col)` b %>%
pull_df(data) %>% map(dim)
#> $subset_complete
#> [1] 131 40
#>
#> $subset_complete
#> [1] 117 40 b %>%
pull_df(effects_analysis) %>% map(dim)
#> $subset_complete
#> [1] 131 42
#>
#> $subset_complete
#> [1] 117 42 c <- b %>% generate_outlier_subsets()
#> Joining with `by = join_by(id_col, dataset)`
#> Joining with `by = join_by(id_col)`
#> Joining with `by = join_by(id_col)`
#> Joining with `by = join_by(id_col, dataset)`
#> Joining with `by = join_by(id_col, dataset)`
#> Joining with `by = join_by(id_col)`
#> Joining with `by = join_by(id_col)`
#> Joining with `by = join_by(id_col, dataset)`
#> Joining with `by = join_by(id_col, dataset)`
#> Joining with `by = join_by(id_col)`
#> Joining with `by = join_by(id_col)`
#> Joining with `by = join_by(id_col, dataset)`
#> Joining with `by = join_by(id_col)`
#> Joining with `by = join_by(id_col)` c %>%
pull_df(data) %>% map(dim)
#> $subset_complete
#> [1] 131 40
#>
#> $subset_complete
#> [1] 117 40 c %>%
pull_df(effects_analysis) %>% map(dim)
#> $subset_complete
#> [1] 131 42
#>
#> $subset_complete
#> [1] 117 42 d <- c %>%
filter(expertise_subset != "expert" | exclusion_set != "complete-rm_outliers") |> #TODO mv into generate_outlier_subsets() so aren't created in the first place
meta_analyse_datasets()
#>
#> ── Meta-analysing Datasets ─────────────────────────────────────────────────────
#>
#> ── Fitting multivariate metaregression ──
#>
#> ── Fitting multivariate metaregression ──
#>
#> ── Fitting multivariate metaregression ──
#>
#> ── Fitting multivariate metaregression ──
#>
#> ── Fitting multivariate metaregression ──
#>
#> ── Fitting multivariate metaregression ──
#>
#> ── Fitting multivariate metaregression ──
#>
#> ── Fitting multivariate metaregression ──
#>
#> ── Fitting multivariate metaregression ──
#>
#> ── Fitting multivariate metaregression ──
#>
#> ── Fitting multivariate metaregression ──
#>
#> ── Fitting multivariate metaregression ──
#>
#> ── Fitting multivariate metaregression ──
#>
#> ── Fitting multivariate metaregression ──
#>
#> ── Fitting multivariate metaregression ──
#>
#> ── Fitting multivariate metaregression ──
#>
#> ── Fitting multivariate metaregression ──
#>
#> ── Fitting multivariate metaregression ──
#>
#> ── Fitting multivariate metaregression ──
#>
#> ── Fitting multivariate metaregression ──
#>
#> ── Fitting multivariate metaregression ──
#>
#> ── Fitting multivariate metaregression ──
#>
#> ── Fitting multivariate metaregression ──
#>
#> ── Fitting multivariate metaregression ──
#>
#> ── Fitting multivariate metaregression ──
#>
#> ── Fitting multivariate metaregression ──
#>
#> ── Fitting multivariate metaregression ──
#>
#> ── Calculating absolute deviation scores from standardised effect sizes ──
#>
#> ── Calculating absolute deviation scores from standardised effect sizes ──
#>
#> ── Calculating absolute deviation scores from standardised effect sizes ──
#>
#> ── Calculating absolute deviation scores from standardised effect sizes ──
#>
#> ── Calculating absolute deviation scores from standardised effect sizes ──
#>
#> ── Calculating absolute deviation scores from standardised effect sizes ──
#>
#> ── Calculating absolute deviation scores from standardised effect sizes ──
#>
#> ── Calculating absolute deviation scores from standardised effect sizes ──
#>
#> ── Calculating absolute deviation scores from standardised effect sizes ──
#>
#> ── Calculating absolute deviation scores from standardised effect sizes ──
#>
#> ── Calculating absolute deviation scores from standardised effect sizes ──
#>
#> ── Calculating absolute deviation scores from standardised effect sizes ──
#>
#> ── Calculating absolute deviation scores from standardised effect sizes ──
#>
#> ── Calculating absolute deviation scores from standardised effect sizes ──
#>
#> ── Calculating absolute deviation scores from standardised effect sizes ──
#>
#> ── Calculating absolute deviation scores from standardised effect sizes ──
#>
#> ── Calculating absolute deviation scores from standardised effect sizes ──
#>
#> ── Calculating absolute deviation scores from standardised effect sizes ──
#>
#> ── Calculating absolute deviation scores from standardised effect sizes ──
#>
#> ── Calculating absolute deviation scores from standardised effect sizes ──
#>
#> ── Calculating absolute deviation scores from standardised effect sizes ──
#>
#> ── Calculating absolute deviation scores from standardised effect sizes ──
#>
#> ── Calculating absolute deviation scores from standardised effect sizes ──
#>
#> ── Calculating absolute deviation scores from standardised effect sizes ──
#>
#> ── Calculating absolute deviation scores from standardised effect sizes ──
#>
#> ── Calculating absolute deviation scores from standardised effect sizes ──
#>
#> ── Calculating absolute deviation scores from standardised effect sizes ──
#>
#> ── Box-cox transforming absolute deviation scores for blue tit ──
#>
#> Registered S3 method overwritten by 'lava':
#> method from
#> print.estimate EnvStats
#> Registered S3 method overwritten by 'quantmod':
#> method from
#> as.zoo.data.frame zoo
#> ℹ Optimised Lambda used in Box-Cox Transformation of blue tit dataset variables is 0.2731 for `abs_deviation_score_estimate`.
#>
#> ── Box-cox transforming absolute deviation scores for blue tit ──
#>
#> ℹ Optimised Lambda used in Box-Cox Transformation of blue tit dataset variables is 0.5126 for `abs_deviation_score_estimate`.
#>
#> ── Box-cox transforming absolute deviation scores for blue tit ──
#>
#> ℹ Optimised Lambda used in Box-Cox Transformation of blue tit dataset variables is 0.2093 for `abs_deviation_score_estimate`.
#>
#> ── Box-cox transforming absolute deviation scores for blue tit ──
#>
#> ℹ Optimised Lambda used in Box-Cox Transformation of blue tit dataset variables is 0.5529 for `abs_deviation_score_estimate`.
#>
#> ── Box-cox transforming absolute deviation scores for blue tit ──
#>
#> ℹ Optimised Lambda used in Box-Cox Transformation of blue tit dataset variables is 0.0153 for `abs_deviation_score_estimate`.
#>
#> ── Box-cox transforming absolute deviation scores for blue tit ──
#>
#> ℹ Optimised Lambda used in Box-Cox Transformation of blue tit dataset variables is 0.6351 for `abs_deviation_score_estimate`.
#>
#> ── Box-cox transforming absolute deviation scores for blue tit ──
#>
#> ℹ Optimised Lambda used in Box-Cox Transformation of blue tit dataset variables is 0.7593 for `abs_deviation_score_estimate`.
#>
#> ── Box-cox transforming absolute deviation scores for blue tit ──
#>
#> ℹ Optimised Lambda used in Box-Cox Transformation of blue tit dataset variables is 1.0478 for `abs_deviation_score_estimate`.
#>
#> ── Box-cox transforming absolute deviation scores for blue tit ──
#>
#> ℹ Optimised Lambda used in Box-Cox Transformation of blue tit dataset variables is 0.1757 for `abs_deviation_score_estimate`.
#>
#> ── Box-cox transforming absolute deviation scores for blue tit ──
#>
#> ℹ Optimised Lambda used in Box-Cox Transformation of blue tit dataset variables is 0.154 for `abs_deviation_score_estimate`.
#>
#> ── Box-cox transforming absolute deviation scores for blue tit ──
#>
#> ℹ Optimised Lambda used in Box-Cox Transformation of blue tit dataset variables is 0.0153 for `abs_deviation_score_estimate`.
#>
#> ── Box-cox transforming absolute deviation scores for blue tit ──
#>
#> ℹ Optimised Lambda used in Box-Cox Transformation of blue tit dataset variables is 0.6344 for `abs_deviation_score_estimate`.
#>
#> ── Box-cox transforming absolute deviation scores for blue tit ──
#>
#> ℹ Optimised Lambda used in Box-Cox Transformation of blue tit dataset variables is 0.8497 for `abs_deviation_score_estimate`.
#>
#> ── Box-cox transforming absolute deviation scores for blue tit ──
#>
#> ℹ Optimised Lambda used in Box-Cox Transformation of blue tit dataset variables is 1.0478 for `abs_deviation_score_estimate`.
#>
#> ── Box-cox transforming absolute deviation scores for eucalyptus ──
#>
#> ℹ Optimised Lambda used in Box-Cox Transformation of eucalyptus dataset variables is 1e-04 for `abs_deviation_score_estimate`.
#>
#> ── Box-cox transforming absolute deviation scores for eucalyptus ──
#>
#> ℹ Optimised Lambda used in Box-Cox Transformation of eucalyptus dataset variables is 1e-04 for `abs_deviation_score_estimate`.
#>
#> ── Box-cox transforming absolute deviation scores for eucalyptus ──
#>
#> ℹ Optimised Lambda used in Box-Cox Transformation of eucalyptus dataset variables is 1e-04 for `abs_deviation_score_estimate`.
#>
#> ── Box-cox transforming absolute deviation scores for eucalyptus ──
#>
#> ℹ Optimised Lambda used in Box-Cox Transformation of eucalyptus dataset variables is 1e-04 for `abs_deviation_score_estimate`.
#>
#> ── Box-cox transforming absolute deviation scores for eucalyptus ──
#>
#> ℹ Optimised Lambda used in Box-Cox Transformation of eucalyptus dataset variables is 0.1373 for `abs_deviation_score_estimate`.
#>
#> ── Box-cox transforming absolute deviation scores for eucalyptus ──
#>
#> ℹ Optimised Lambda used in Box-Cox Transformation of eucalyptus dataset variables is 0.3943 for `abs_deviation_score_estimate`.
#>
#> ── Box-cox transforming absolute deviation scores for eucalyptus ──
#>
#> ℹ Optimised Lambda used in Box-Cox Transformation of eucalyptus dataset variables is 1.5842 for `abs_deviation_score_estimate`.
#>
#> ── Box-cox transforming absolute deviation scores for eucalyptus ──
#>
#> ℹ Optimised Lambda used in Box-Cox Transformation of eucalyptus dataset variables is 1e-04 for `abs_deviation_score_estimate`.
#>
#> ── Box-cox transforming absolute deviation scores for eucalyptus ──
#>
#> ℹ Optimised Lambda used in Box-Cox Transformation of eucalyptus dataset variables is 1e-04 for `abs_deviation_score_estimate`.
#>
#> ── Box-cox transforming absolute deviation scores for eucalyptus ──
#>
#> ℹ Optimised Lambda used in Box-Cox Transformation of eucalyptus dataset variables is 1e-04 for `abs_deviation_score_estimate`.
#>
#> ── Box-cox transforming absolute deviation scores for eucalyptus ──
#>
#> ℹ Optimised Lambda used in Box-Cox Transformation of eucalyptus dataset variables is 1e-04 for `abs_deviation_score_estimate`.
#>
#> ── Box-cox transforming absolute deviation scores for eucalyptus ──
#>
#> ℹ Optimised Lambda used in Box-Cox Transformation of eucalyptus dataset variables is 0.4433 for `abs_deviation_score_estimate`.
#>
#> ── Box-cox transforming absolute deviation scores for eucalyptus ──
#>
#> ℹ Optimised Lambda used in Box-Cox Transformation of eucalyptus dataset variables is 0.4887 for `abs_deviation_score_estimate`.
#>
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#>
#> ℹ Zrblue titcompleteAllAll
#> Registered S3 method overwritten by 'parsnip':
#> method from
#> print.nullmodel vegan
#>
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#>
#> ℹ Zrblue titcompleteAllAll
#>
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#>
#> ℹ Zrblue titcompleteAllexpert
#>
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#>
#> ℹ Zrblue titcompletedata_flawedAll
#>
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#>
#> ℹ Zrblue titcompletedata_flawed_majorAll
#>
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#>
#> ℹ Zrblue titcomplete-rm_outliersAllAll
#>
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#>
#> ℹ Zrblue titcomplete-rm_outliersdata_flawedAll
#>
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#>
#> ℹ Zrblue titcomplete-rm_outliersdata_flawed_majorAll
#>
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#>
#> ℹ Zrblue titpartialAllAll
#>
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#>
#> ℹ Zrblue titpartialdata_flawedAll
#>
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#>
#> ℹ Zrblue titpartialdata_flawed_majorAll
#>
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#>
#> ℹ Zrblue titpartial-rm_outliersAllAll
#>
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#>
#> ℹ Zrblue titpartial-rm_outliersdata_flawedAll
#>
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#>
#> ℹ Zrblue titpartial-rm_outliersdata_flawed_majorAll
#>
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#>
#> ℹ ZreucalyptuscompleteAllAll
#>
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#>
#> ℹ ZreucalyptuscompleteAllexpert
#>
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#>
#> ℹ Zreucalyptuscompletedata_flawedAll
#>
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#>
#> ℹ Zreucalyptuscompletedata_flawed_majorAll
#>
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#>
#> ℹ Zreucalyptuscomplete-rm_outliersAllAll
#>
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#>
#> ℹ Zreucalyptuscomplete-rm_outliersdata_flawedAll
#>
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#>
#> ℹ Zreucalyptuscomplete-rm_outliersdata_flawed_majorAll
#>
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#>
#> ℹ ZreucalyptuspartialAllAll
#>
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#>
#> ℹ Zreucalyptuspartialdata_flawedAll
#>
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#>
#> ℹ Zreucalyptuspartialdata_flawed_majorAll
#>
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#>
#> ℹ Zreucalyptuspartial-rm_outliersAllAll
#>
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#>
#> ℹ Zreucalyptuspartial-rm_outliersdata_flawedAll
#>
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#>
#> ℹ Zreucalyptuspartial-rm_outliersdata_flawed_majorAll
#>
#> ── Fitting metaregression with continuous ratings predictor on box_cox_transformed outcomes ──
#>
#> ── Fitting metaregression with continuous ratings predictor on box_cox_transformed outcomes ──
#>
#> ── Fitting metaregression with continuous ratings predictor on box_cox_transformed outcomes ──
#>
#> ── Fitting metaregression with continuous ratings predictor on box_cox_transformed outcomes ──
#>
#> ── Fitting metaregression with continuous ratings predictor on box_cox_transformed outcomes ──
#>
#> ── Fitting metaregression with continuous ratings predictor on box_cox_transformed outcomes ──
#>
#> ── Fitting metaregression with continuous ratings predictor on box_cox_transformed outcomes ──
#>
#> ── Fitting metaregression with continuous ratings predictor on box_cox_transformed outcomes ──
#>
#> ── Fitting metaregression with continuous ratings predictor on box_cox_transformed outcomes ──
#>
#> ── Fitting metaregression with continuous ratings predictor on box_cox_transformed outcomes ──
#>
#> ── Fitting metaregression with continuous ratings predictor on box_cox_transformed outcomes ──
#>
#> ── Fitting metaregression with continuous ratings predictor on box_cox_transformed outcomes ──
#>
#> ── Fitting metaregression with continuous ratings predictor on box_cox_transformed outcomes ──
#>
#> ── Fitting metaregression with continuous ratings predictor on box_cox_transformed outcomes ──
#>
#> ── Fitting metaregression with continuous ratings predictor on box_cox_transformed outcomes ──
#>
#> ── Fitting metaregression with continuous ratings predictor on box_cox_transformed outcomes ──
#>
#> ── Fitting metaregression with continuous ratings predictor on box_cox_transformed outcomes ──
#>
#> ── Fitting metaregression with continuous ratings predictor on box_cox_transformed outcomes ──
#>
#> ── Fitting metaregression with continuous ratings predictor on box_cox_transformed outcomes ──
#>
#> ── Fitting metaregression with continuous ratings predictor on box_cox_transformed outcomes ──
#>
#> ── Fitting metaregression with continuous ratings predictor on box_cox_transformed outcomes ──
#>
#> ── Fitting metaregression with continuous ratings predictor on box_cox_transformed outcomes ──
#>
#> ── Fitting metaregression with continuous ratings predictor on box_cox_transformed outcomes ──
#>
#> ── Fitting metaregression with continuous ratings predictor on box_cox_transformed outcomes ──
#>
#> ── Fitting metaregression with continuous ratings predictor on box_cox_transformed outcomes ──
#>
#> ── Fitting metaregression with continuous ratings predictor on box_cox_transformed outcomes ──
#>
#> ── Fitting metaregression with continuous ratings predictor on box_cox_transformed outcomes ──
#>
#> ── Fitting lmer with categorical ratings predictor on box_cox_transformed outcomes ──
#>
#> ── Fitting lmer with categorical ratings predictor on box_cox_transformed outcomes ──
#>
#> ── Fitting lmer with categorical ratings predictor on box_cox_transformed outcomes ──
#>
#> ── Fitting lmer with categorical ratings predictor on box_cox_transformed outcomes ──
#>
#> ── Fitting lmer with categorical ratings predictor on box_cox_transformed outcomes ──
#>
#> ── Fitting lmer with categorical ratings predictor on box_cox_transformed outcomes ──
#>
#> ── Fitting lmer with categorical ratings predictor on box_cox_transformed outcomes ──
#>
#> ── Fitting lmer with categorical ratings predictor on box_cox_transformed outcomes ──
#>
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting lmer with categorical ratings predictor on box_cox_transformed outcomes ──
#>
#> ── Fitting lmer with categorical ratings predictor on box_cox_transformed outcomes ──
#>
#> ── Fitting lmer with categorical ratings predictor on box_cox_transformed outcomes ──
#>
#> ── Fitting lmer with categorical ratings predictor on box_cox_transformed outcomes ──
#>
#> ── Fitting lmer with categorical ratings predictor on box_cox_transformed outcomes ──
#>
#> ── Fitting lmer with categorical ratings predictor on box_cox_transformed outcomes ──
#>
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting lmer with categorical ratings predictor on box_cox_transformed outcomes ──
#>
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting lmer with categorical ratings predictor on box_cox_transformed outcomes ──
#>
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting lmer with categorical ratings predictor on box_cox_transformed outcomes ──
#>
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting lmer with categorical ratings predictor on box_cox_transformed outcomes ──
#>
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting lmer with categorical ratings predictor on box_cox_transformed outcomes ──
#>
#> ── Fitting lmer with categorical ratings predictor on box_cox_transformed outcomes ──
#>
#> ── Fitting lmer with categorical ratings predictor on box_cox_transformed outcomes ──
#>
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting lmer with categorical ratings predictor on box_cox_transformed outcomes ──
#>
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting lmer with categorical ratings predictor on box_cox_transformed outcomes ──
#>
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting lmer with categorical ratings predictor on box_cox_transformed outcomes ──
#>
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting lmer with categorical ratings predictor on box_cox_transformed outcomes ──
#>
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting lmer with categorical ratings predictor on box_cox_transformed outcomes ──
#>
#> ── Fitting lmer with categorical ratings predictor on box_cox_transformed outcomes ──
#>
#> ── Fitting lmer with categorical ratings predictor on box_cox_transformed outcomes ──
#>
#> ── Fitting lmer with categorical ratings predictor on box_cox_transformed outcomes ──
#>
#> ── Fitting lmer with categorical ratings predictor on box_cox_transformed outcomes ──
#>
#> ── Fitting lmer with categorical ratings predictor on box_cox_transformed outcomes ──
#>
#> ── Fitting lmer with categorical ratings predictor on box_cox_transformed outcomes ──
#>
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting lmer with categorical ratings predictor on box_cox_transformed outcomes ──
#>
#> ── Fitting lmer with categorical ratings predictor on box_cox_transformed outcomes ──
#>
#> ── Fitting lmer with categorical ratings predictor on box_cox_transformed outcomes ──
#>
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting lmer with categorical ratings predictor on box_cox_transformed outcomes ──
#>
#> ── Fitting lmer with categorical ratings predictor on box_cox_transformed outcomes ──
#>
#> ── Fitting lmer with categorical ratings predictor on box_cox_transformed outcomes ──
#>
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting lmer with categorical ratings predictor on box_cox_transformed outcomes ──
#>
#> ── Fitting lmer with categorical ratings predictor on box_cox_transformed outcomes ──
#>
#> ── Fitting lmer with categorical ratings predictor on box_cox_transformed outcomes ──
#>
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting lmer with categorical ratings predictor on box_cox_transformed outcomes ──
#>
#> ── Fitting lmer with categorical ratings predictor on box_cox_transformed outcomes ──
#>
#> ── Fitting lmer with categorical ratings predictor on box_cox_transformed outcomes ──
#>
#> ── Fitting lmer with categorical ratings predictor on box_cox_transformed outcomes ──
#>
#> ── Fitting lmer with categorical ratings predictor on box_cox_transformed outcomes ──
#>
#> ── Fitting lmer with categorical ratings predictor on box_cox_transformed outcomes ──
#>
#> ── Fitting lmer with categorical ratings predictor on box_cox_transformed outcomes ──
#>
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting lmer with categorical ratings predictor on box_cox_transformed outcomes ──
#>
#> ── Fitting lmer with categorical ratings predictor on box_cox_transformed outcomes ──
#>
#> ── Fitting lmer with categorical ratings predictor on box_cox_transformed outcomes ──
#>
#> ── Fitting lmer with categorical ratings predictor on box_cox_transformed outcomes ──
#>
#> ── Fitting lmer with categorical ratings predictor on box_cox_transformed outcomes ──
#>
#> ── Fitting lmer with categorical ratings predictor on box_cox_transformed outcomes ──
#>
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#>
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#>
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#>
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#>
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#>
#>
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#>
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#>
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#>
#>
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#>
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#>
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#>
#>
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#>
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#>
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#>
#>
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#>
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#>
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#>
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#>
#>
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#>
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#>
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#>
#>
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#>
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#>
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#>
#>
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#>
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#>
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#> Warning: There were 61 warnings in `dplyr::mutate()`.
#> The first warning was:
#> ℹ In argument: `box_cox_rating_cont = purrr::map(...)`.
#> ℹ In group 1: `estimate_type = "Zr"`, `dataset = "blue tit"`, `exclusion_set =
#> "complete"`, `publishable_subset = "All"`, `expertise_subset = "All"`.
#> Caused by warning in `optwrap()`:
#> ! convergence code -4 from nloptwrap: NLOPT_ROUNDOFF_LIMITED: Roundoff errors led to a breakdown of the optimization algorithm. In this case, the returned minimum may still be useful. (e.g. this error occurs in NEWUOA if one tries to achieve a tolerance too close to machine precision.)
#> ℹ Run `dplyr::last_dplyr_warnings()` to see the 60 remaining warnings. d %>% pull_df(data) %>% map(dim)
#> $subset_complete
#> [1] 131 40
#>
#> $subset_complete
#> [1] 117 40 d %>% pull_df(effects_analysis) %>% map(dim)
#> [[1]]
#> [1] 131 48
#>
#> [[2]]
#> [1] 131 48 Created on 2024-06-14 with reprex v2.1.0 |
65d4fd2 fixes issue: library(ManyEcoEvo)
#> Warning: replacing previous import 'purrr::%@%' by 'rlang::%@%' when loading
#> 'ManyEcoEvo'
#> Warning: replacing previous import 'purrr::flatten_lgl' by 'rlang::flatten_lgl'
#> when loading 'ManyEcoEvo'
#> Warning: replacing previous import 'purrr::splice' by 'rlang::splice' when
#> loading 'ManyEcoEvo'
#> Warning: replacing previous import 'purrr::flatten_chr' by 'rlang::flatten_chr'
#> when loading 'ManyEcoEvo'
#> Warning: replacing previous import 'purrr::flatten_raw' by 'rlang::flatten_raw'
#> when loading 'ManyEcoEvo'
#> Warning: replacing previous import 'purrr::flatten' by 'rlang::flatten' when
#> loading 'ManyEcoEvo'
#> Warning: replacing previous import 'purrr::flatten_dbl' by 'rlang::flatten_dbl'
#> when loading 'ManyEcoEvo'
#> Warning: replacing previous import 'purrr::invoke' by 'rlang::invoke' when
#> loading 'ManyEcoEvo'
#> Warning: replacing previous import 'purrr::flatten_int' by 'rlang::flatten_int'
#> when loading 'ManyEcoEvo' library(tidyverse)
pull_df <- function(x,y){
x %>%
filter(dataset == "blue tit",
publishable_subset == "All",
expertise_subset == "All",
exclusion_set == "complete") %>%
pull({{y}})
}
a <-
ManyEcoEvo %>%
prepare_response_variables(estimate_type = "Zr") |>
generate_exclusion_subsets(estimate_type = "Zr") |>
generate_rating_subsets() |>
generate_expertise_subsets(ManyEcoEvo:::expert_subset) %>%
generate_collinearity_subset(ManyEcoEvo:::collinearity_subset)
#>
#> ── Applying exclusion rules and generating exclusion subsets ───────────────────
#>
#> ── Computing meta-analysis inputsfor estimate type Zr ──────────────────────────
#>
#> ── Computing standardised effect sizes `Zr` and variance `VZr` ──
#>
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df 484.0193.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df 666.56874.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df 590.18263.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.006225,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.003996,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df 481.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.09247,
#> 3. adjusted_df 316.17526.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.029,
#> 3. adjusted_df 366.3.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.042,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.01416305,
#> 3. adjusted_df 257.905.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.030382264,
#> 3. adjusted_df 2372.82.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.01409,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.008781,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.014853,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.000769,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.033978443,
#> 3. adjusted_df 347.4992526.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.01823188,
#> 3. adjusted_df 55.44391.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.02039768,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.02496,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.03575,
#> 3. adjusted_df NA.
#>
#> ── Computing meta-analysis inputsfor estimate type Zr ──────────────────────────
#>
#> ── Computing standardised effect sizes `Zr` and variance `VZr` ──
#>
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.29212,
#> 3. adjusted_df 21.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.007831,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.07216,
#> 3. adjusted_df 0.560867697.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.57,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.2328,
#> 3. adjusted_df 343.24787.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.3188723,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.0059286,
#> 3. adjusted_df 1.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.007385,
#> 3. adjusted_df 3.5e-25.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.052462,
#> 3. adjusted_df 3.5e-25.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.605,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 8.98,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 7.97,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 5.19,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 18.5,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 5.92,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.529,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 2.89,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.605,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.01312667,
#> 3. adjusted_df -2.6269353.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.197,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.192,
#> 3. adjusted_df 82.703.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.1,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.0048042,
#> 3. adjusted_df 341.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.21,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.5756016,
#> 3. adjusted_df 3.536992.
#> Joining with `by = join_by(id_col, dataset)`
#> Joining with `by = join_by(id_col, dataset)`
#> Joining with `by = join_by(id_col, dataset)`
#> Joining with `by = join_by(id_col, dataset)`
#> Joining with `by = join_by(id_col)`
#> Joining with `by = join_by(id_col)`
#> Joining with `by = join_by(id_col)`
#> Joining with `by = join_by(id_col)`
#> Joining with `by = join_by(id_col)`
#> Joining with `by = join_by(id_col)`
#> Joining with `by = join_by(id_col)`
#> Joining with `by = join_by(id_col)`
#> Joining with `by = join_by(response_id)`
#> Joining with `by = join_by(response_id)`
#> Joining with `by = join_by(id_col, dataset)`
#> Joining with `by = join_by(id_col, dataset)` b <-
a %>%
compute_MA_inputs(estimate_type = "Zr")
#> Joining with `by = join_by(id_col, num_variables)`
#> Joining with `by = join_by(id_col)`
#> Joining with `by = join_by(id_col)`
#> Joining with `by = join_by(id_col, num_variables)`
#> Joining with `by = join_by(id_col, num_variables)`
#> Joining with `by = join_by(id_col, num_variables)`
#> Joining with `by = join_by(id_col)`
#> Joining with `by = join_by(id_col)`
#> Joining with `by = join_by(id_col, num_variables)`
#> Joining with `by = join_by(id_col)`
#> Joining with `by = join_by(id_col)`
#> Joining with `by = join_by(id_col, num_variables)`
#> Joining with `by = join_by(id_col, num_variables)`
#> Joining with `by = join_by(id_col)`
#> Joining with `by = join_by(id_col)` b %>%
pull_df(data) %>% map(dim)
#> $subset_complete
#> [1] 131 40
#>
#> $subset_complete
#> [1] 117 40 b %>%
pull_df(effects_analysis) %>% map(dim)
#> $subset_complete
#> [1] 131 42
#>
#> $subset_complete
#> [1] 117 42 c <- b %>% generate_outlier_subsets()
#> Joining with `by = join_by(id_col, dataset)`
#> Joining with `by = join_by(id_col)`
#> Joining with `by = join_by(id_col)`
#> Joining with `by = join_by(id_col, dataset)`
#> Joining with `by = join_by(id_col, dataset)`
#> Joining with `by = join_by(id_col)`
#> Joining with `by = join_by(id_col)`
#> Joining with `by = join_by(id_col, dataset)`
#> Joining with `by = join_by(id_col, dataset)`
#> Joining with `by = join_by(id_col)`
#> Joining with `by = join_by(id_col)`
#> Joining with `by = join_by(id_col, dataset)`
#> Joining with `by = join_by(id_col)`
#> Joining with `by = join_by(id_col)` c %>%
pull_df(data) %>% map(dim)
#> $subset_complete
#> [1] 131 40
#>
#> $subset_complete
#> [1] 117 40 c %>%
pull_df(effects_analysis) %>% map(dim)
#> $subset_complete
#> [1] 131 42
#>
#> $subset_complete
#> [1] 117 42 d <- c %>%
filter(expertise_subset != "expert" | exclusion_set != "complete-rm_outliers") |> #TODO mv into generate_outlier_subsets() so aren't created in the first place
meta_analyse_datasets()
#>
#> ── Meta-analysing Datasets ─────────────────────────────────────────────────────
#>
#> ── Fitting multivariate metaregression ──
#>
#> ── Fitting multivariate metaregression ──
#>
#> ── Fitting multivariate metaregression ──
#>
#> ── Fitting multivariate metaregression ──
#>
#> ── Fitting multivariate metaregression ──
#>
#> ── Fitting multivariate metaregression ──
#>
#> ── Fitting multivariate metaregression ──
#>
#> ── Fitting multivariate metaregression ──
#>
#> ── Fitting multivariate metaregression ──
#>
#> ── Fitting multivariate metaregression ──
#>
#> ── Fitting multivariate metaregression ──
#>
#> ── Fitting multivariate metaregression ──
#>
#> ── Fitting multivariate metaregression ──
#>
#> ── Fitting multivariate metaregression ──
#>
#> ── Fitting multivariate metaregression ──
#>
#> ── Fitting multivariate metaregression ──
#>
#> ── Fitting multivariate metaregression ──
#>
#> ── Fitting multivariate metaregression ──
#>
#> ── Fitting multivariate metaregression ──
#>
#> ── Fitting multivariate metaregression ──
#>
#> ── Fitting multivariate metaregression ──
#>
#> ── Fitting multivariate metaregression ──
#>
#> ── Fitting multivariate metaregression ──
#>
#> ── Fitting multivariate metaregression ──
#>
#> ── Fitting multivariate metaregression ──
#>
#> ── Fitting multivariate metaregression ──
#>
#> ── Fitting multivariate metaregression ──
#>
#> ── Calculating absolute deviation scores from standardised effect sizes ──
#>
#> ── Calculating absolute deviation scores from standardised effect sizes ──
#>
#> ── Calculating absolute deviation scores from standardised effect sizes ──
#>
#> ── Calculating absolute deviation scores from standardised effect sizes ──
#>
#> ── Calculating absolute deviation scores from standardised effect sizes ──
#>
#> ── Calculating absolute deviation scores from standardised effect sizes ──
#>
#> ── Calculating absolute deviation scores from standardised effect sizes ──
#>
#> ── Calculating absolute deviation scores from standardised effect sizes ──
#>
#> ── Calculating absolute deviation scores from standardised effect sizes ──
#>
#> ── Calculating absolute deviation scores from standardised effect sizes ──
#>
#> ── Calculating absolute deviation scores from standardised effect sizes ──
#>
#> ── Calculating absolute deviation scores from standardised effect sizes ──
#>
#> ── Calculating absolute deviation scores from standardised effect sizes ──
#>
#> ── Calculating absolute deviation scores from standardised effect sizes ──
#>
#> ── Calculating absolute deviation scores from standardised effect sizes ──
#>
#> ── Calculating absolute deviation scores from standardised effect sizes ──
#>
#> ── Calculating absolute deviation scores from standardised effect sizes ──
#>
#> ── Calculating absolute deviation scores from standardised effect sizes ──
#>
#> ── Calculating absolute deviation scores from standardised effect sizes ──
#>
#> ── Calculating absolute deviation scores from standardised effect sizes ──
#>
#> ── Calculating absolute deviation scores from standardised effect sizes ──
#>
#> ── Calculating absolute deviation scores from standardised effect sizes ──
#>
#> ── Calculating absolute deviation scores from standardised effect sizes ──
#>
#> ── Calculating absolute deviation scores from standardised effect sizes ──
#>
#> ── Calculating absolute deviation scores from standardised effect sizes ──
#>
#> ── Calculating absolute deviation scores from standardised effect sizes ──
#>
#> ── Calculating absolute deviation scores from standardised effect sizes ──
#>
#> ── Box-cox transforming absolute deviation scores for blue tit ──
#>
#> Registered S3 method overwritten by 'lava':
#> method from
#> print.estimate EnvStats
#> Registered S3 method overwritten by 'quantmod':
#> method from
#> as.zoo.data.frame zoo
#> ℹ Optimised Lambda used in Box-Cox Transformation of blue tit dataset variables is 0.2731 for `abs_deviation_score_estimate`.
#>
#> ── Box-cox transforming absolute deviation scores for blue tit ──
#>
#> ℹ Optimised Lambda used in Box-Cox Transformation of blue tit dataset variables is 0.5126 for `abs_deviation_score_estimate`.
#>
#> ── Box-cox transforming absolute deviation scores for blue tit ──
#>
#> ℹ Optimised Lambda used in Box-Cox Transformation of blue tit dataset variables is 0.2093 for `abs_deviation_score_estimate`.
#>
#> ── Box-cox transforming absolute deviation scores for blue tit ──
#>
#> ℹ Optimised Lambda used in Box-Cox Transformation of blue tit dataset variables is 0.5529 for `abs_deviation_score_estimate`.
#>
#> ── Box-cox transforming absolute deviation scores for blue tit ──
#>
#> ℹ Optimised Lambda used in Box-Cox Transformation of blue tit dataset variables is 0.0153 for `abs_deviation_score_estimate`.
#>
#> ── Box-cox transforming absolute deviation scores for blue tit ──
#>
#> ℹ Optimised Lambda used in Box-Cox Transformation of blue tit dataset variables is 0.6351 for `abs_deviation_score_estimate`.
#>
#> ── Box-cox transforming absolute deviation scores for blue tit ──
#>
#> ℹ Optimised Lambda used in Box-Cox Transformation of blue tit dataset variables is 0.7593 for `abs_deviation_score_estimate`.
#>
#> ── Box-cox transforming absolute deviation scores for blue tit ──
#>
#> ℹ Optimised Lambda used in Box-Cox Transformation of blue tit dataset variables is 1.0478 for `abs_deviation_score_estimate`.
#>
#> ── Box-cox transforming absolute deviation scores for blue tit ──
#>
#> ℹ Optimised Lambda used in Box-Cox Transformation of blue tit dataset variables is 0.1757 for `abs_deviation_score_estimate`.
#>
#> ── Box-cox transforming absolute deviation scores for blue tit ──
#>
#> ℹ Optimised Lambda used in Box-Cox Transformation of blue tit dataset variables is 0.154 for `abs_deviation_score_estimate`.
#>
#> ── Box-cox transforming absolute deviation scores for blue tit ──
#>
#> ℹ Optimised Lambda used in Box-Cox Transformation of blue tit dataset variables is 0.0153 for `abs_deviation_score_estimate`.
#>
#> ── Box-cox transforming absolute deviation scores for blue tit ──
#>
#> ℹ Optimised Lambda used in Box-Cox Transformation of blue tit dataset variables is 0.6344 for `abs_deviation_score_estimate`.
#>
#> ── Box-cox transforming absolute deviation scores for blue tit ──
#>
#> ℹ Optimised Lambda used in Box-Cox Transformation of blue tit dataset variables is 0.8497 for `abs_deviation_score_estimate`.
#>
#> ── Box-cox transforming absolute deviation scores for blue tit ──
#>
#> ℹ Optimised Lambda used in Box-Cox Transformation of blue tit dataset variables is 1.0478 for `abs_deviation_score_estimate`.
#>
#> ── Box-cox transforming absolute deviation scores for eucalyptus ──
#>
#> ℹ Optimised Lambda used in Box-Cox Transformation of eucalyptus dataset variables is 1e-04 for `abs_deviation_score_estimate`.
#>
#> ── Box-cox transforming absolute deviation scores for eucalyptus ──
#>
#> ℹ Optimised Lambda used in Box-Cox Transformation of eucalyptus dataset variables is 1e-04 for `abs_deviation_score_estimate`.
#>
#> ── Box-cox transforming absolute deviation scores for eucalyptus ──
#>
#> ℹ Optimised Lambda used in Box-Cox Transformation of eucalyptus dataset variables is 1e-04 for `abs_deviation_score_estimate`.
#>
#> ── Box-cox transforming absolute deviation scores for eucalyptus ──
#>
#> ℹ Optimised Lambda used in Box-Cox Transformation of eucalyptus dataset variables is 1e-04 for `abs_deviation_score_estimate`.
#>
#> ── Box-cox transforming absolute deviation scores for eucalyptus ──
#>
#> ℹ Optimised Lambda used in Box-Cox Transformation of eucalyptus dataset variables is 0.1373 for `abs_deviation_score_estimate`.
#>
#> ── Box-cox transforming absolute deviation scores for eucalyptus ──
#>
#> ℹ Optimised Lambda used in Box-Cox Transformation of eucalyptus dataset variables is 0.3943 for `abs_deviation_score_estimate`.
#>
#> ── Box-cox transforming absolute deviation scores for eucalyptus ──
#>
#> ℹ Optimised Lambda used in Box-Cox Transformation of eucalyptus dataset variables is 1.5842 for `abs_deviation_score_estimate`.
#>
#> ── Box-cox transforming absolute deviation scores for eucalyptus ──
#>
#> ℹ Optimised Lambda used in Box-Cox Transformation of eucalyptus dataset variables is 1e-04 for `abs_deviation_score_estimate`.
#>
#> ── Box-cox transforming absolute deviation scores for eucalyptus ──
#>
#> ℹ Optimised Lambda used in Box-Cox Transformation of eucalyptus dataset variables is 1e-04 for `abs_deviation_score_estimate`.
#>
#> ── Box-cox transforming absolute deviation scores for eucalyptus ──
#>
#> ℹ Optimised Lambda used in Box-Cox Transformation of eucalyptus dataset variables is 1e-04 for `abs_deviation_score_estimate`.
#>
#> ── Box-cox transforming absolute deviation scores for eucalyptus ──
#>
#> ℹ Optimised Lambda used in Box-Cox Transformation of eucalyptus dataset variables is 1e-04 for `abs_deviation_score_estimate`.
#>
#> ── Box-cox transforming absolute deviation scores for eucalyptus ──
#>
#> ℹ Optimised Lambda used in Box-Cox Transformation of eucalyptus dataset variables is 0.4433 for `abs_deviation_score_estimate`.
#>
#> ── Box-cox transforming absolute deviation scores for eucalyptus ──
#>
#> ℹ Optimised Lambda used in Box-Cox Transformation of eucalyptus dataset variables is 0.4887 for `abs_deviation_score_estimate`.
#>
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#>
#> ℹ Zrblue titcompleteAllAllAll
#> Registered S3 method overwritten by 'parsnip':
#> method from
#> print.nullmodel vegan
#>
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#>
#> ℹ Zrblue titcompleteAllAllcollinearity_removed
#>
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#>
#> ℹ Zrblue titcompleteAllexpertAll
#>
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#>
#> ℹ Zrblue titcompletedata_flawedAllAll
#>
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#>
#> ℹ Zrblue titcompletedata_flawed_majorAllAll
#>
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#>
#> ℹ Zrblue titcomplete-rm_outliersAllAllAll
#>
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#>
#> ℹ Zrblue titcomplete-rm_outliersdata_flawedAllAll
#>
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#>
#> ℹ Zrblue titcomplete-rm_outliersdata_flawed_majorAllAll
#>
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#>
#> ℹ Zrblue titpartialAllAllAll
#>
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#>
#> ℹ Zrblue titpartialdata_flawedAllAll
#>
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#>
#> ℹ Zrblue titpartialdata_flawed_majorAllAll
#>
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#>
#> ℹ Zrblue titpartial-rm_outliersAllAllAll
#>
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#>
#> ℹ Zrblue titpartial-rm_outliersdata_flawedAllAll
#>
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#>
#> ℹ Zrblue titpartial-rm_outliersdata_flawed_majorAllAll
#>
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#>
#> ℹ ZreucalyptuscompleteAllAllAll
#>
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#>
#> ℹ ZreucalyptuscompleteAllexpertAll
#>
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#>
#> ℹ Zreucalyptuscompletedata_flawedAllAll
#>
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#>
#> ℹ Zreucalyptuscompletedata_flawed_majorAllAll
#>
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#>
#> ℹ Zreucalyptuscomplete-rm_outliersAllAllAll
#>
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#>
#> ℹ Zreucalyptuscomplete-rm_outliersdata_flawedAllAll
#>
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#>
#> ℹ Zreucalyptuscomplete-rm_outliersdata_flawed_majorAllAll
#>
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#>
#> ℹ ZreucalyptuspartialAllAllAll
#>
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#>
#> ℹ Zreucalyptuspartialdata_flawedAllAll
#>
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#>
#> ℹ Zreucalyptuspartialdata_flawed_majorAllAll
#>
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#>
#> ℹ Zreucalyptuspartial-rm_outliersAllAllAll
#>
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#>
#> ℹ Zreucalyptuspartial-rm_outliersdata_flawedAllAll
#>
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#>
#> ℹ Zreucalyptuspartial-rm_outliersdata_flawed_majorAllAll
#>
#> ── Fitting metaregression with continuous ratings predictor on box_cox_transformed outcomes ──
#>
#> ── Fitting metaregression with continuous ratings predictor on box_cox_transformed outcomes ──
#>
#> ── Fitting metaregression with continuous ratings predictor on box_cox_transformed outcomes ──
#>
#> ── Fitting metaregression with continuous ratings predictor on box_cox_transformed outcomes ──
#>
#> ── Fitting metaregression with continuous ratings predictor on box_cox_transformed outcomes ──
#>
#> ── Fitting metaregression with continuous ratings predictor on box_cox_transformed outcomes ──
#>
#> ── Fitting metaregression with continuous ratings predictor on box_cox_transformed outcomes ──
#>
#> ── Fitting metaregression with continuous ratings predictor on box_cox_transformed outcomes ──
#>
#> ── Fitting metaregression with continuous ratings predictor on box_cox_transformed outcomes ──
#>
#> ── Fitting metaregression with continuous ratings predictor on box_cox_transformed outcomes ──
#>
#> ── Fitting metaregression with continuous ratings predictor on box_cox_transformed outcomes ──
#>
#> ── Fitting metaregression with continuous ratings predictor on box_cox_transformed outcomes ──
#>
#> ── Fitting metaregression with continuous ratings predictor on box_cox_transformed outcomes ──
#>
#> ── Fitting metaregression with continuous ratings predictor on box_cox_transformed outcomes ──
#>
#> ── Fitting metaregression with continuous ratings predictor on box_cox_transformed outcomes ──
#>
#> ── Fitting metaregression with continuous ratings predictor on box_cox_transformed outcomes ──
#>
#> ── Fitting metaregression with continuous ratings predictor on box_cox_transformed outcomes ──
#>
#> ── Fitting metaregression with continuous ratings predictor on box_cox_transformed outcomes ──
#>
#> ── Fitting metaregression with continuous ratings predictor on box_cox_transformed outcomes ──
#>
#> ── Fitting metaregression with continuous ratings predictor on box_cox_transformed outcomes ──
#>
#> ── Fitting metaregression with continuous ratings predictor on box_cox_transformed outcomes ──
#>
#> ── Fitting metaregression with continuous ratings predictor on box_cox_transformed outcomes ──
#>
#> ── Fitting metaregression with continuous ratings predictor on box_cox_transformed outcomes ──
#>
#> ── Fitting metaregression with continuous ratings predictor on box_cox_transformed outcomes ──
#>
#> ── Fitting metaregression with continuous ratings predictor on box_cox_transformed outcomes ──
#>
#> ── Fitting metaregression with continuous ratings predictor on box_cox_transformed outcomes ──
#>
#> ── Fitting metaregression with continuous ratings predictor on box_cox_transformed outcomes ──
#>
#> ── Fitting lmer with categorical ratings predictor on box_cox_transformed outcomes ──
#>
#> ── Fitting lmer with categorical ratings predictor on box_cox_transformed outcomes ──
#>
#> ── Fitting lmer with categorical ratings predictor on box_cox_transformed outcomes ──
#>
#> ── Fitting lmer with categorical ratings predictor on box_cox_transformed outcomes ──
#>
#> ── Fitting lmer with categorical ratings predictor on box_cox_transformed outcomes ──
#>
#> ── Fitting lmer with categorical ratings predictor on box_cox_transformed outcomes ──
#>
#> ── Fitting lmer with categorical ratings predictor on box_cox_transformed outcomes ──
#>
#> ── Fitting lmer with categorical ratings predictor on box_cox_transformed outcomes ──
#>
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting lmer with categorical ratings predictor on box_cox_transformed outcomes ──
#>
#> ── Fitting lmer with categorical ratings predictor on box_cox_transformed outcomes ──
#>
#> ── Fitting lmer with categorical ratings predictor on box_cox_transformed outcomes ──
#>
#> ── Fitting lmer with categorical ratings predictor on box_cox_transformed outcomes ──
#>
#> ── Fitting lmer with categorical ratings predictor on box_cox_transformed outcomes ──
#>
#> ── Fitting lmer with categorical ratings predictor on box_cox_transformed outcomes ──
#>
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting lmer with categorical ratings predictor on box_cox_transformed outcomes ──
#>
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting lmer with categorical ratings predictor on box_cox_transformed outcomes ──
#>
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting lmer with categorical ratings predictor on box_cox_transformed outcomes ──
#>
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting lmer with categorical ratings predictor on box_cox_transformed outcomes ──
#>
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting lmer with categorical ratings predictor on box_cox_transformed outcomes ──
#>
#> ── Fitting lmer with categorical ratings predictor on box_cox_transformed outcomes ──
#>
#> ── Fitting lmer with categorical ratings predictor on box_cox_transformed outcomes ──
#>
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting lmer with categorical ratings predictor on box_cox_transformed outcomes ──
#>
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting lmer with categorical ratings predictor on box_cox_transformed outcomes ──
#>
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting lmer with categorical ratings predictor on box_cox_transformed outcomes ──
#>
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting lmer with categorical ratings predictor on box_cox_transformed outcomes ──
#>
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting lmer with categorical ratings predictor on box_cox_transformed outcomes ──
#>
#> ── Fitting lmer with categorical ratings predictor on box_cox_transformed outcomes ──
#>
#> ── Fitting lmer with categorical ratings predictor on box_cox_transformed outcomes ──
#>
#> ── Fitting lmer with categorical ratings predictor on box_cox_transformed outcomes ──
#>
#> ── Fitting lmer with categorical ratings predictor on box_cox_transformed outcomes ──
#>
#> ── Fitting lmer with categorical ratings predictor on box_cox_transformed outcomes ──
#>
#> ── Fitting lmer with categorical ratings predictor on box_cox_transformed outcomes ──
#>
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting lmer with categorical ratings predictor on box_cox_transformed outcomes ──
#>
#> ── Fitting lmer with categorical ratings predictor on box_cox_transformed outcomes ──
#>
#> ── Fitting lmer with categorical ratings predictor on box_cox_transformed outcomes ──
#>
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting lmer with categorical ratings predictor on box_cox_transformed outcomes ──
#>
#> ── Fitting lmer with categorical ratings predictor on box_cox_transformed outcomes ──
#>
#> ── Fitting lmer with categorical ratings predictor on box_cox_transformed outcomes ──
#>
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting lmer with categorical ratings predictor on box_cox_transformed outcomes ──
#>
#> ── Fitting lmer with categorical ratings predictor on box_cox_transformed outcomes ──
#>
#> ── Fitting lmer with categorical ratings predictor on box_cox_transformed outcomes ──
#>
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting lmer with categorical ratings predictor on box_cox_transformed outcomes ──
#>
#> ── Fitting lmer with categorical ratings predictor on box_cox_transformed outcomes ──
#>
#> ── Fitting lmer with categorical ratings predictor on box_cox_transformed outcomes ──
#>
#> ── Fitting lmer with categorical ratings predictor on box_cox_transformed outcomes ──
#>
#> ── Fitting lmer with categorical ratings predictor on box_cox_transformed outcomes ──
#>
#> ── Fitting lmer with categorical ratings predictor on box_cox_transformed outcomes ──
#>
#> ── Fitting lmer with categorical ratings predictor on box_cox_transformed outcomes ──
#>
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting lmer with categorical ratings predictor on box_cox_transformed outcomes ──
#>
#> ── Fitting lmer with categorical ratings predictor on box_cox_transformed outcomes ──
#>
#> ── Fitting lmer with categorical ratings predictor on box_cox_transformed outcomes ──
#>
#> ── Fitting lmer with categorical ratings predictor on box_cox_transformed outcomes ──
#>
#> ── Fitting lmer with categorical ratings predictor on box_cox_transformed outcomes ──
#>
#> ── Fitting lmer with categorical ratings predictor on box_cox_transformed outcomes ──
#>
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#>
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#>
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#>
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#>
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#>
#>
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#>
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#>
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#>
#>
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#>
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#>
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#>
#>
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#>
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#>
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#>
#>
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#>
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#>
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#>
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#>
#>
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#>
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#>
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#>
#>
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#>
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#>
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#>
#>
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#>
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#>
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#> Warning: There were 62 warnings in `dplyr::mutate()`.
#> The first warning was:
#> ℹ In argument: `box_cox_rating_cont = purrr::map(...)`.
#> ℹ In group 1: `estimate_type = "Zr"`, `dataset = "blue tit"`, `exclusion_set =
#> "complete"`, `publishable_subset = "All"`, `expertise_subset = "All"`,
#> `collinearity_subset = "All"`.
#> Caused by warning in `optwrap()`:
#> ! convergence code -4 from nloptwrap: NLOPT_ROUNDOFF_LIMITED: Roundoff errors led to a breakdown of the optimization algorithm. In this case, the returned minimum may still be useful. (e.g. this error occurs in NEWUOA if one tries to achieve a tolerance too close to machine precision.)
#> ℹ Run `dplyr::last_dplyr_warnings()` to see the 61 remaining warnings. d %>% pull_df(data) %>% map(dim)
#> $subset_complete
#> [1] 131 40
#>
#> $subset_complete
#> [1] 117 40 d %>% pull_df(effects_analysis) %>% map(dim)
#> [[1]]
#> [1] 131 48
#>
#> [[2]]
#> [1] 117 48 Created on 2024-06-14 with reprex v2.1.0 |
- rerun tar_make() - rebuild package with updated data
From #29 noticed issues where pipeline functions are missing a level of grouping for applying Zr functions! (i.e. |
Potentially related to #75 ?? |
Double check after updates on #121 |
Issue is resolved: Local library(tidyverse)
dim_data <-
targets::tar_read(ManyEcoEvo_results) %>%
select(ends_with("set")) %>%
bind_cols(targets::tar_read(ManyEcoEvo_results) %>% pull(data) %>% map_dfr(~ dim(.x) %>%
set_names(c("rows", "cols")) %>%
as_tibble_row()))
#> Registered S3 method overwritten by 'parsnip':
#> method from
#> print.nullmodel vegan
#> Registered S3 method overwritten by 'lava':
#> method from
#> print.estimate EnvStats
dim_effects_analysis <-
targets::tar_read(ManyEcoEvo_results) %>%
select(ends_with("set")) %>%
bind_cols(targets::tar_read(ManyEcoEvo_results) %>% pull(effects_analysis) %>% map_dfr(~ dim(.x) %>%
set_names(c("rows", "cols")) %>%
as_tibble_row()))
left_join(dim_data, dim_effects_analysis, by = join_by(exclusion_set, dataset, publishable_subset, expertise_subset, collinearity_subset)) %>%
select(-contains("cols")) %>%
mutate(difference = rows.x == rows.y) %>%
filter(difference) %>%
knitr::kable()
Created on 2024-09-10 with reprex v2.1.0 |
list-col
effects_analysis
is not being subset,data
is. Function is applied after other pre-processing to makeManyEcoEvo::ManyEcoEvo_results
. Downstream analyses useeffects_analysis
as the input list-col of df's, however.Created on 2024-06-14 with reprex v2.1.0
ManyEcoEvo/R/generate_collinearity_subset.R
Lines 53 to 55 in 77c89f6
The text was updated successfully, but these errors were encountered: