Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Collinearity subset analysis does not subset correct list-column of df's #40

Closed
egouldo opened this issue Jun 14, 2024 · 8 comments · Fixed by #42
Closed

Collinearity subset analysis does not subset correct list-column of df's #40

egouldo opened this issue Jun 14, 2024 · 8 comments · Fixed by #42
Assignees
Labels
bug an unexpected problem or unintended behavior

Comments

@egouldo
Copy link
Owner

egouldo commented Jun 14, 2024

list-col effects_analysis is not being subset, data is. Function is applied after other pre-processing to make ManyEcoEvo::ManyEcoEvo_results. Downstream analyses use effects_analysis as the input list-col of df's, however.

library(ManyEcoEvo)
library(dplyr)
#> 
#> Attaching package: 'dplyr'
#> The following objects are masked from 'package:stats':
#> 
#>     filter, lag
#> The following objects are masked from 'package:base':
#> 
#>     intersect, setdiff, setequal, union
library(purrr)

pull_df <- function(x,y){
  x %>% 
    filter(dataset == "blue tit", 
           publishable_subset == "All", 
           expertise_subset == "All", 
           exclusion_set == "complete") %>% 
    pull({{y}})
}

ManyEcoEvo::ManyEcoEvo_results %>% pull_df(data) %>% map(dim)
#> $subset_complete
#> [1] 131  40
#> 
#> $subset_complete
#> [1] 119  40
ManyEcoEvo::ManyEcoEvo_results %>% pull_df(effects_analysis) %>% map(dim)
#> [[1]]
#> [1] 131  48
#> 
#> [[2]]
#> [1] 131  48

Created on 2024-06-14 with reprex v2.1.0

mutate(data = map(.x = data,
.f = dplyr::anti_join, collinearity_subset,
by = join_by(response_id, id_col, dataset) )) %>%

@egouldo egouldo added the bug an unexpected problem or unintended behavior label Jun 14, 2024
@egouldo egouldo added this to the respond-re milestone Jun 14, 2024
@egouldo egouldo self-assigned this Jun 14, 2024
egouldo added a commit that referenced this issue Jun 14, 2024
@egouldo
Copy link
Owner Author

egouldo commented Jun 14, 2024

But when I try to tar_make() expert_subset is not present yet and throwing error... so maybe it's downstream subsetting causing the problem??

library(ManyEcoEvo)
library(tidyverse)

a <- 
  ManyEcoEvo %>% 
  prepare_response_variables(estimate_type = "Zr") |>  
  generate_exclusion_subsets(estimate_type = "Zr") |> 
  generate_rating_subsets() |> 
  generate_expertise_subsets(ManyEcoEvo:::expert_subset)
#> 
#> ── Applying exclusion rules and generating exclusion subsets ───────────────────
#> 
#> ── Computing meta-analysis inputsfor estimate type Zr ──────────────────────────
#> 
#> ── Computing standardised effect sizes `Zr` and variance `VZr` ──
#> 
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df 484.0193.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df 666.56874.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df 590.18263.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.006225,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.003996,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df 481.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.09247,
#> 3. adjusted_df 316.17526.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.029,
#> 3. adjusted_df 366.3.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.042,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.01416305,
#> 3. adjusted_df 257.905.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.030382264,
#> 3. adjusted_df 2372.82.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.01409,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.008781,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.014853,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.000769,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.033978443,
#> 3. adjusted_df 347.4992526.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.01823188,
#> 3. adjusted_df 55.44391.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.02039768,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.02496,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.03575,
#> 3. adjusted_df NA.
#> 
#> ── Computing meta-analysis inputsfor estimate type Zr ──────────────────────────
#> 
#> ── Computing standardised effect sizes `Zr` and variance `VZr` ──
#> 
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.29212,
#> 3. adjusted_df 21.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.007831,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.07216,
#> 3. adjusted_df 0.560867697.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.57,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.2328,
#> 3. adjusted_df 343.24787.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.3188723,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.0059286,
#> 3. adjusted_df 1.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.007385,
#> 3. adjusted_df 3.5e-25.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.052462,
#> 3. adjusted_df 3.5e-25.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.605,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 8.98,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 7.97,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 5.19,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 18.5,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 5.92,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.529,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 2.89,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.605,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.01312667,
#> 3. adjusted_df -2.6269353.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.197,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.192,
#> 3. adjusted_df 82.703.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.1,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.0048042,
#> 3. adjusted_df 341.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.21,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.5756016,
#> 3. adjusted_df 3.536992.
#> Joining with `by = join_by(id_col, dataset)`
#> Joining with `by = join_by(id_col, dataset)`
#> Joining with `by = join_by(id_col, dataset)`
#> Joining with `by = join_by(id_col, dataset)`
#> Joining with `by = join_by(id_col)`
#> Joining with `by = join_by(id_col)`
#> Joining with `by = join_by(id_col)`
#> Joining with `by = join_by(id_col)`
#> Joining with `by = join_by(id_col)`
#> Joining with `by = join_by(id_col)`
#> Joining with `by = join_by(id_col)`
#> Joining with `by = join_by(id_col)`
#> Joining with `by = join_by(response_id)`
#> Joining with `by = join_by(response_id)`
#> Joining with `by = join_by(id_col, dataset)`
#> Joining with `by = join_by(id_col, dataset)`
a %>% generate_collinearity_subset(ManyEcoEvo:::collinearity_subset)
#> Error in `mutate()`:
#> ℹ In argument: `effects_analysis = map(...)`.
#> ℹ In group 1: `dataset = "blue tit"`, `exclusion_set = "complete"`,
#>   `estimate_type = "Zr"`.
#> Caused by error:
#> ! object 'effects_analysis' not found

Created on 2024-06-14 with reprex v2.1.0

@egouldo
Copy link
Owner Author

egouldo commented Jun 14, 2024

Rebuilt pkg after f242965 and reran reprex, passes now, so def a downstream issue from generate_collinerity_subset()

library(ManyEcoEvo)
library(tidyverse)

a <- 
  ManyEcoEvo %>% 
  prepare_response_variables(estimate_type = "Zr") |>  
  generate_exclusion_subsets(estimate_type = "Zr") |> 
  generate_rating_subsets() |> 
  generate_expertise_subsets(ManyEcoEvo:::expert_subset)
#> 
#> ── Applying exclusion rules and generating exclusion subsets ───────────────────
#> 
#> ── Computing meta-analysis inputsfor estimate type Zr ──────────────────────────
#> 
#> ── Computing standardised effect sizes `Zr` and variance `VZr` ──
#> 
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df 484.0193.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df 666.56874.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df 590.18263.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.006225,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.003996,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df 481.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.09247,
#> 3. adjusted_df 316.17526.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.029,
#> 3. adjusted_df 366.3.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.042,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.01416305,
#> 3. adjusted_df 257.905.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.030382264,
#> 3. adjusted_df 2372.82.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.01409,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.008781,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.014853,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.000769,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.033978443,
#> 3. adjusted_df 347.4992526.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.01823188,
#> 3. adjusted_df 55.44391.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.02039768,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.02496,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.03575,
#> 3. adjusted_df NA.
#> 
#> ── Computing meta-analysis inputsfor estimate type Zr ──────────────────────────
#> 
#> ── Computing standardised effect sizes `Zr` and variance `VZr` ──
#> 
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.29212,
#> 3. adjusted_df 21.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.007831,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.07216,
#> 3. adjusted_df 0.560867697.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.57,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.2328,
#> 3. adjusted_df 343.24787.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.3188723,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.0059286,
#> 3. adjusted_df 1.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.007385,
#> 3. adjusted_df 3.5e-25.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.052462,
#> 3. adjusted_df 3.5e-25.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.605,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 8.98,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 7.97,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 5.19,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 18.5,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 5.92,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.529,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 2.89,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.605,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.01312667,
#> 3. adjusted_df -2.6269353.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.197,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.192,
#> 3. adjusted_df 82.703.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.1,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.0048042,
#> 3. adjusted_df 341.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.21,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.5756016,
#> 3. adjusted_df 3.536992.
#> Joining with `by = join_by(id_col, dataset)`
#> Joining with `by = join_by(id_col, dataset)`
#> Joining with `by = join_by(id_col, dataset)`
#> Joining with `by = join_by(id_col, dataset)`
#> Joining with `by = join_by(id_col)`
#> Joining with `by = join_by(id_col)`
#> Joining with `by = join_by(id_col)`
#> Joining with `by = join_by(id_col)`
#> Joining with `by = join_by(id_col)`
#> Joining with `by = join_by(id_col)`
#> Joining with `by = join_by(id_col)`
#> Joining with `by = join_by(id_col)`
#> Joining with `by = join_by(response_id)`
#> Joining with `by = join_by(response_id)`
#> Joining with `by = join_by(id_col, dataset)`
#> Joining with `by = join_by(id_col, dataset)`
a %>% generate_collinearity_subset(ManyEcoEvo:::collinearity_subset)
#> # A tibble: 15 × 8
#> # Groups:   dataset, exclusion_set, estimate_type [4]
#>    dataset    exclusion_set estimate_type data                diversity_data    
#>    <chr>      <chr>         <chr>         <named list>        <named list>      
#>  1 blue tit   complete      Zr            <tibble [131 × 40]> <tibble>          
#>  2 eucalyptus complete      Zr            <tibble [79 × 40]>  <tibble [79 × 61]>
#>  3 blue tit   partial       Zr            <tibble [118 × 40]> <tibble>          
#>  4 eucalyptus partial       Zr            <tibble [70 × 40]>  <tibble [70 × 61]>
#>  5 blue tit   complete      Zr            <tibble [109 × 6]>  <tibble>          
#>  6 blue tit   complete      Zr            <tibble [32 × 6]>   <tibble [32 × 54]>
#>  7 eucalyptus complete      Zr            <tibble [55 × 6]>   <tibble [55 × 61]>
#>  8 eucalyptus complete      Zr            <tibble [13 × 6]>   <tibble [13 × 61]>
#>  9 blue tit   partial       Zr            <tibble [100 × 6]>  <tibble>          
#> 10 blue tit   partial       Zr            <tibble [32 × 6]>   <tibble [32 × 54]>
#> 11 eucalyptus partial       Zr            <tibble [52 × 6]>   <tibble [52 × 61]>
#> 12 eucalyptus partial       Zr            <tibble [10 × 6]>   <tibble [10 × 61]>
#> 13 blue tit   complete      Zr            <tibble [89 × 40]>  <tibble [89 × 54]>
#> 14 eucalyptus complete      Zr            <tibble [34 × 40]>  <tibble [34 × 61]>
#> 15 blue tit   complete      Zr            <tibble [117 × 40]> <tibble>          
#> # ℹ 3 more variables: publishable_subset <chr>, expertise_subset <chr>,
#> #   collinearity_subset <chr>

Created on 2024-06-14 with reprex v2.1.0

@egouldo
Copy link
Owner Author

egouldo commented Jun 14, 2024

OK, error is coming from meta_analyse_datasets()

library(ManyEcoEvo)
library(tidyverse)

pull_df <- function(x,y){
  x %>% 
    filter(dataset == "blue tit", 
           publishable_subset == "All", 
           expertise_subset == "All", 
           exclusion_set == "complete") %>% 
    pull({{y}})
}

a <- 
  ManyEcoEvo %>% 
  prepare_response_variables(estimate_type = "Zr") |>  
  generate_exclusion_subsets(estimate_type = "Zr") |> 
  generate_rating_subsets() |> 
  generate_expertise_subsets(ManyEcoEvo:::expert_subset) %>% 
  generate_collinearity_subset(ManyEcoEvo:::collinearity_subset)
#> 
#> ── Applying exclusion rules and generating exclusion subsets ───────────────────
#> 
#> ── Computing meta-analysis inputsfor estimate type Zr ──────────────────────────
#> 
#> ── Computing standardised effect sizes `Zr` and variance `VZr` ──
#> 
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df 484.0193.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df 666.56874.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df 590.18263.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.006225,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.003996,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df 481.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.09247,
#> 3. adjusted_df 316.17526.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.029,
#> 3. adjusted_df 366.3.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.042,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.01416305,
#> 3. adjusted_df 257.905.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.030382264,
#> 3. adjusted_df 2372.82.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.01409,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.008781,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.014853,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.000769,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.033978443,
#> 3. adjusted_df 347.4992526.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.01823188,
#> 3. adjusted_df 55.44391.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.02039768,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.02496,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.03575,
#> 3. adjusted_df NA.
#> 
#> ── Computing meta-analysis inputsfor estimate type Zr ──────────────────────────
#> 
#> ── Computing standardised effect sizes `Zr` and variance `VZr` ──
#> 
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.29212,
#> 3. adjusted_df 21.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.007831,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.07216,
#> 3. adjusted_df 0.560867697.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.57,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.2328,
#> 3. adjusted_df 343.24787.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.3188723,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.0059286,
#> 3. adjusted_df 1.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.007385,
#> 3. adjusted_df 3.5e-25.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.052462,
#> 3. adjusted_df 3.5e-25.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.605,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 8.98,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 7.97,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 5.19,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 18.5,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 5.92,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.529,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 2.89,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.605,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.01312667,
#> 3. adjusted_df -2.6269353.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.197,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.192,
#> 3. adjusted_df 82.703.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.1,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.0048042,
#> 3. adjusted_df 341.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.21,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.5756016,
#> 3. adjusted_df 3.536992.
#> Joining with `by = join_by(id_col, dataset)`
#> Joining with `by = join_by(id_col, dataset)`
#> Joining with `by = join_by(id_col, dataset)`
#> Joining with `by = join_by(id_col, dataset)`
#> Joining with `by = join_by(id_col)`
#> Joining with `by = join_by(id_col)`
#> Joining with `by = join_by(id_col)`
#> Joining with `by = join_by(id_col)`
#> Joining with `by = join_by(id_col)`
#> Joining with `by = join_by(id_col)`
#> Joining with `by = join_by(id_col)`
#> Joining with `by = join_by(id_col)`
#> Joining with `by = join_by(response_id)`
#> Joining with `by = join_by(response_id)`
#> Joining with `by = join_by(id_col, dataset)`
#> Joining with `by = join_by(id_col, dataset)`
b <- 
  a %>% 
  compute_MA_inputs(estimate_type = "Zr") 
#> Joining with `by = join_by(id_col, num_variables)`
#> Joining with `by = join_by(id_col)`
#> Joining with `by = join_by(id_col)`
#> Joining with `by = join_by(id_col, num_variables)`
#> Joining with `by = join_by(id_col, num_variables)`
#> Joining with `by = join_by(id_col, num_variables)`
#> Joining with `by = join_by(id_col)`
#> Joining with `by = join_by(id_col)`
#> Joining with `by = join_by(id_col, num_variables)`
#> Joining with `by = join_by(id_col)`
#> Joining with `by = join_by(id_col)`
#> Joining with `by = join_by(id_col, num_variables)`
#> Joining with `by = join_by(id_col, num_variables)`
#> Joining with `by = join_by(id_col)`
#> Joining with `by = join_by(id_col)`
b %>% 
  pull_df(data) %>% map(dim)
#> $subset_complete
#> [1] 131  40
#> 
#> $subset_complete
#> [1] 117  40
b %>% 
  pull_df(effects_analysis) %>% map(dim)
#> $subset_complete
#> [1] 131  42
#> 
#> $subset_complete
#> [1] 117  42
c <- b %>%   generate_outlier_subsets()
#> Joining with `by = join_by(id_col, dataset)`
#> Joining with `by = join_by(id_col)`
#> Joining with `by = join_by(id_col)`
#> Joining with `by = join_by(id_col, dataset)`
#> Joining with `by = join_by(id_col, dataset)`
#> Joining with `by = join_by(id_col)`
#> Joining with `by = join_by(id_col)`
#> Joining with `by = join_by(id_col, dataset)`
#> Joining with `by = join_by(id_col, dataset)`
#> Joining with `by = join_by(id_col)`
#> Joining with `by = join_by(id_col)`
#> Joining with `by = join_by(id_col, dataset)`
#> Joining with `by = join_by(id_col)`
#> Joining with `by = join_by(id_col)`
c %>% 
  pull_df(data) %>% map(dim)
#> $subset_complete
#> [1] 131  40
#> 
#> $subset_complete
#> [1] 117  40
c %>% 
  pull_df(effects_analysis) %>% map(dim)
#> $subset_complete
#> [1] 131  42
#> 
#> $subset_complete
#> [1] 117  42
d <- c %>% 
  filter(expertise_subset != "expert" | exclusion_set != "complete-rm_outliers") |> #TODO mv into generate_outlier_subsets() so aren't created in the first place
  meta_analyse_datasets()
#> 
#> ── Meta-analysing Datasets ─────────────────────────────────────────────────────
#> 
#> ── Fitting multivariate metaregression ──
#> 
#> ── Fitting multivariate metaregression ──
#> 
#> ── Fitting multivariate metaregression ──
#> 
#> ── Fitting multivariate metaregression ──
#> 
#> ── Fitting multivariate metaregression ──
#> 
#> ── Fitting multivariate metaregression ──
#> 
#> ── Fitting multivariate metaregression ──
#> 
#> ── Fitting multivariate metaregression ──
#> 
#> ── Fitting multivariate metaregression ──
#> 
#> ── Fitting multivariate metaregression ──
#> 
#> ── Fitting multivariate metaregression ──
#> 
#> ── Fitting multivariate metaregression ──
#> 
#> ── Fitting multivariate metaregression ──
#> 
#> ── Fitting multivariate metaregression ──
#> 
#> ── Fitting multivariate metaregression ──
#> 
#> ── Fitting multivariate metaregression ──
#> 
#> ── Fitting multivariate metaregression ──
#> 
#> ── Fitting multivariate metaregression ──
#> 
#> ── Fitting multivariate metaregression ──
#> 
#> ── Fitting multivariate metaregression ──
#> 
#> ── Fitting multivariate metaregression ──
#> 
#> ── Fitting multivariate metaregression ──
#> 
#> ── Fitting multivariate metaregression ──
#> 
#> ── Fitting multivariate metaregression ──
#> 
#> ── Fitting multivariate metaregression ──
#> 
#> ── Fitting multivariate metaregression ──
#> 
#> ── Fitting multivariate metaregression ──
#> 
#> ── Calculating absolute deviation scores from standardised effect sizes ──
#> 
#> ── Calculating absolute deviation scores from standardised effect sizes ──
#> 
#> ── Calculating absolute deviation scores from standardised effect sizes ──
#> 
#> ── Calculating absolute deviation scores from standardised effect sizes ──
#> 
#> ── Calculating absolute deviation scores from standardised effect sizes ──
#> 
#> ── Calculating absolute deviation scores from standardised effect sizes ──
#> 
#> ── Calculating absolute deviation scores from standardised effect sizes ──
#> 
#> ── Calculating absolute deviation scores from standardised effect sizes ──
#> 
#> ── Calculating absolute deviation scores from standardised effect sizes ──
#> 
#> ── Calculating absolute deviation scores from standardised effect sizes ──
#> 
#> ── Calculating absolute deviation scores from standardised effect sizes ──
#> 
#> ── Calculating absolute deviation scores from standardised effect sizes ──
#> 
#> ── Calculating absolute deviation scores from standardised effect sizes ──
#> 
#> ── Calculating absolute deviation scores from standardised effect sizes ──
#> 
#> ── Calculating absolute deviation scores from standardised effect sizes ──
#> 
#> ── Calculating absolute deviation scores from standardised effect sizes ──
#> 
#> ── Calculating absolute deviation scores from standardised effect sizes ──
#> 
#> ── Calculating absolute deviation scores from standardised effect sizes ──
#> 
#> ── Calculating absolute deviation scores from standardised effect sizes ──
#> 
#> ── Calculating absolute deviation scores from standardised effect sizes ──
#> 
#> ── Calculating absolute deviation scores from standardised effect sizes ──
#> 
#> ── Calculating absolute deviation scores from standardised effect sizes ──
#> 
#> ── Calculating absolute deviation scores from standardised effect sizes ──
#> 
#> ── Calculating absolute deviation scores from standardised effect sizes ──
#> 
#> ── Calculating absolute deviation scores from standardised effect sizes ──
#> 
#> ── Calculating absolute deviation scores from standardised effect sizes ──
#> 
#> ── Calculating absolute deviation scores from standardised effect sizes ──
#> 
#> ── Box-cox transforming absolute deviation scores for blue tit ──
#> 
#> Registered S3 method overwritten by 'lava':
#>   method         from    
#>   print.estimate EnvStats
#> Registered S3 method overwritten by 'quantmod':
#>   method            from
#>   as.zoo.data.frame zoo 
#> ℹ Optimised Lambda used in Box-Cox Transformation of blue tit dataset variables is 0.2731 for `abs_deviation_score_estimate`.
#> 
#> ── Box-cox transforming absolute deviation scores for blue tit ──
#> 
#> ℹ Optimised Lambda used in Box-Cox Transformation of blue tit dataset variables is 0.5126 for `abs_deviation_score_estimate`.
#> 
#> ── Box-cox transforming absolute deviation scores for blue tit ──
#> 
#> ℹ Optimised Lambda used in Box-Cox Transformation of blue tit dataset variables is 0.2093 for `abs_deviation_score_estimate`.
#> 
#> ── Box-cox transforming absolute deviation scores for blue tit ──
#> 
#> ℹ Optimised Lambda used in Box-Cox Transformation of blue tit dataset variables is 0.5529 for `abs_deviation_score_estimate`.
#> 
#> ── Box-cox transforming absolute deviation scores for blue tit ──
#> 
#> ℹ Optimised Lambda used in Box-Cox Transformation of blue tit dataset variables is 0.0153 for `abs_deviation_score_estimate`.
#> 
#> ── Box-cox transforming absolute deviation scores for blue tit ──
#> 
#> ℹ Optimised Lambda used in Box-Cox Transformation of blue tit dataset variables is 0.6351 for `abs_deviation_score_estimate`.
#> 
#> ── Box-cox transforming absolute deviation scores for blue tit ──
#> 
#> ℹ Optimised Lambda used in Box-Cox Transformation of blue tit dataset variables is 0.7593 for `abs_deviation_score_estimate`.
#> 
#> ── Box-cox transforming absolute deviation scores for blue tit ──
#> 
#> ℹ Optimised Lambda used in Box-Cox Transformation of blue tit dataset variables is 1.0478 for `abs_deviation_score_estimate`.
#> 
#> ── Box-cox transforming absolute deviation scores for blue tit ──
#> 
#> ℹ Optimised Lambda used in Box-Cox Transformation of blue tit dataset variables is 0.1757 for `abs_deviation_score_estimate`.
#> 
#> ── Box-cox transforming absolute deviation scores for blue tit ──
#> 
#> ℹ Optimised Lambda used in Box-Cox Transformation of blue tit dataset variables is 0.154 for `abs_deviation_score_estimate`.
#> 
#> ── Box-cox transforming absolute deviation scores for blue tit ──
#> 
#> ℹ Optimised Lambda used in Box-Cox Transformation of blue tit dataset variables is 0.0153 for `abs_deviation_score_estimate`.
#> 
#> ── Box-cox transforming absolute deviation scores for blue tit ──
#> 
#> ℹ Optimised Lambda used in Box-Cox Transformation of blue tit dataset variables is 0.6344 for `abs_deviation_score_estimate`.
#> 
#> ── Box-cox transforming absolute deviation scores for blue tit ──
#> 
#> ℹ Optimised Lambda used in Box-Cox Transformation of blue tit dataset variables is 0.8497 for `abs_deviation_score_estimate`.
#> 
#> ── Box-cox transforming absolute deviation scores for blue tit ──
#> 
#> ℹ Optimised Lambda used in Box-Cox Transformation of blue tit dataset variables is 1.0478 for `abs_deviation_score_estimate`.
#> 
#> ── Box-cox transforming absolute deviation scores for eucalyptus ──
#> 
#> ℹ Optimised Lambda used in Box-Cox Transformation of eucalyptus dataset variables is 1e-04 for `abs_deviation_score_estimate`.
#> 
#> ── Box-cox transforming absolute deviation scores for eucalyptus ──
#> 
#> ℹ Optimised Lambda used in Box-Cox Transformation of eucalyptus dataset variables is 1e-04 for `abs_deviation_score_estimate`.
#> 
#> ── Box-cox transforming absolute deviation scores for eucalyptus ──
#> 
#> ℹ Optimised Lambda used in Box-Cox Transformation of eucalyptus dataset variables is 1e-04 for `abs_deviation_score_estimate`.
#> 
#> ── Box-cox transforming absolute deviation scores for eucalyptus ──
#> 
#> ℹ Optimised Lambda used in Box-Cox Transformation of eucalyptus dataset variables is 1e-04 for `abs_deviation_score_estimate`.
#> 
#> ── Box-cox transforming absolute deviation scores for eucalyptus ──
#> 
#> ℹ Optimised Lambda used in Box-Cox Transformation of eucalyptus dataset variables is 0.1373 for `abs_deviation_score_estimate`.
#> 
#> ── Box-cox transforming absolute deviation scores for eucalyptus ──
#> 
#> ℹ Optimised Lambda used in Box-Cox Transformation of eucalyptus dataset variables is 0.3943 for `abs_deviation_score_estimate`.
#> 
#> ── Box-cox transforming absolute deviation scores for eucalyptus ──
#> 
#> ℹ Optimised Lambda used in Box-Cox Transformation of eucalyptus dataset variables is 1.5842 for `abs_deviation_score_estimate`.
#> 
#> ── Box-cox transforming absolute deviation scores for eucalyptus ──
#> 
#> ℹ Optimised Lambda used in Box-Cox Transformation of eucalyptus dataset variables is 1e-04 for `abs_deviation_score_estimate`.
#> 
#> ── Box-cox transforming absolute deviation scores for eucalyptus ──
#> 
#> ℹ Optimised Lambda used in Box-Cox Transformation of eucalyptus dataset variables is 1e-04 for `abs_deviation_score_estimate`.
#> 
#> ── Box-cox transforming absolute deviation scores for eucalyptus ──
#> 
#> ℹ Optimised Lambda used in Box-Cox Transformation of eucalyptus dataset variables is 1e-04 for `abs_deviation_score_estimate`.
#> 
#> ── Box-cox transforming absolute deviation scores for eucalyptus ──
#> 
#> ℹ Optimised Lambda used in Box-Cox Transformation of eucalyptus dataset variables is 1e-04 for `abs_deviation_score_estimate`.
#> 
#> ── Box-cox transforming absolute deviation scores for eucalyptus ──
#> 
#> ℹ Optimised Lambda used in Box-Cox Transformation of eucalyptus dataset variables is 0.4433 for `abs_deviation_score_estimate`.
#> 
#> ── Box-cox transforming absolute deviation scores for eucalyptus ──
#> 
#> ℹ Optimised Lambda used in Box-Cox Transformation of eucalyptus dataset variables is 0.4887 for `abs_deviation_score_estimate`.
#> 
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#> 
#> ℹ Zrblue titcompleteAllAll
#> Registered S3 method overwritten by 'parsnip':
#>   method          from 
#>   print.nullmodel vegan
#> 
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#> 
#> ℹ Zrblue titcompleteAllAll
#> 
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#> 
#> ℹ Zrblue titcompleteAllexpert
#> 
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#> 
#> ℹ Zrblue titcompletedata_flawedAll
#> 
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#> 
#> ℹ Zrblue titcompletedata_flawed_majorAll
#> 
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#> 
#> ℹ Zrblue titcomplete-rm_outliersAllAll
#> 
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#> 
#> ℹ Zrblue titcomplete-rm_outliersdata_flawedAll
#> 
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#> 
#> ℹ Zrblue titcomplete-rm_outliersdata_flawed_majorAll
#> 
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#> 
#> ℹ Zrblue titpartialAllAll
#> 
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#> 
#> ℹ Zrblue titpartialdata_flawedAll
#> 
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#> 
#> ℹ Zrblue titpartialdata_flawed_majorAll
#> 
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#> 
#> ℹ Zrblue titpartial-rm_outliersAllAll
#> 
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#> 
#> ℹ Zrblue titpartial-rm_outliersdata_flawedAll
#> 
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#> 
#> ℹ Zrblue titpartial-rm_outliersdata_flawed_majorAll
#> 
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#> 
#> ℹ ZreucalyptuscompleteAllAll
#> 
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#> 
#> ℹ ZreucalyptuscompleteAllexpert
#> 
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#> 
#> ℹ Zreucalyptuscompletedata_flawedAll
#> 
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#> 
#> ℹ Zreucalyptuscompletedata_flawed_majorAll
#> 
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#> 
#> ℹ Zreucalyptuscomplete-rm_outliersAllAll
#> 
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#> 
#> ℹ Zreucalyptuscomplete-rm_outliersdata_flawedAll
#> 
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#> 
#> ℹ Zreucalyptuscomplete-rm_outliersdata_flawed_majorAll
#> 
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#> 
#> ℹ ZreucalyptuspartialAllAll
#> 
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#> 
#> ℹ Zreucalyptuspartialdata_flawedAll
#> 
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#> 
#> ℹ Zreucalyptuspartialdata_flawed_majorAll
#> 
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#> 
#> ℹ Zreucalyptuspartial-rm_outliersAllAll
#> 
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#> 
#> ℹ Zreucalyptuspartial-rm_outliersdata_flawedAll
#> 
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#> 
#> ℹ Zreucalyptuspartial-rm_outliersdata_flawed_majorAll
#> 
#> ── Fitting metaregression with continuous ratings predictor on box_cox_transformed outcomes ──
#> 
#> ── Fitting metaregression with continuous ratings predictor on box_cox_transformed outcomes ──
#> 
#> ── Fitting metaregression with continuous ratings predictor on box_cox_transformed outcomes ──
#> 
#> ── Fitting metaregression with continuous ratings predictor on box_cox_transformed outcomes ──
#> 
#> ── Fitting metaregression with continuous ratings predictor on box_cox_transformed outcomes ──
#> 
#> ── Fitting metaregression with continuous ratings predictor on box_cox_transformed outcomes ──
#> 
#> ── Fitting metaregression with continuous ratings predictor on box_cox_transformed outcomes ──
#> 
#> ── Fitting metaregression with continuous ratings predictor on box_cox_transformed outcomes ──
#> 
#> ── Fitting metaregression with continuous ratings predictor on box_cox_transformed outcomes ──
#> 
#> ── Fitting metaregression with continuous ratings predictor on box_cox_transformed outcomes ──
#> 
#> ── Fitting metaregression with continuous ratings predictor on box_cox_transformed outcomes ──
#> 
#> ── Fitting metaregression with continuous ratings predictor on box_cox_transformed outcomes ──
#> 
#> ── Fitting metaregression with continuous ratings predictor on box_cox_transformed outcomes ──
#> 
#> ── Fitting metaregression with continuous ratings predictor on box_cox_transformed outcomes ──
#> 
#> ── Fitting metaregression with continuous ratings predictor on box_cox_transformed outcomes ──
#> 
#> ── Fitting metaregression with continuous ratings predictor on box_cox_transformed outcomes ──
#> 
#> ── Fitting metaregression with continuous ratings predictor on box_cox_transformed outcomes ──
#> 
#> ── Fitting metaregression with continuous ratings predictor on box_cox_transformed outcomes ──
#> 
#> ── Fitting metaregression with continuous ratings predictor on box_cox_transformed outcomes ──
#> 
#> ── Fitting metaregression with continuous ratings predictor on box_cox_transformed outcomes ──
#> 
#> ── Fitting metaregression with continuous ratings predictor on box_cox_transformed outcomes ──
#> 
#> ── Fitting metaregression with continuous ratings predictor on box_cox_transformed outcomes ──
#> 
#> ── Fitting metaregression with continuous ratings predictor on box_cox_transformed outcomes ──
#> 
#> ── Fitting metaregression with continuous ratings predictor on box_cox_transformed outcomes ──
#> 
#> ── Fitting metaregression with continuous ratings predictor on box_cox_transformed outcomes ──
#> 
#> ── Fitting metaregression with continuous ratings predictor on box_cox_transformed outcomes ──
#> 
#> ── Fitting metaregression with continuous ratings predictor on box_cox_transformed outcomes ──
#> 
#> ── Fitting lmer with categorical ratings predictor on box_cox_transformed outcomes ──
#> 
#> ── Fitting lmer with categorical ratings predictor on box_cox_transformed outcomes ──
#> 
#> ── Fitting lmer with categorical ratings predictor on box_cox_transformed outcomes ──
#> 
#> ── Fitting lmer with categorical ratings predictor on box_cox_transformed outcomes ──
#> 
#> ── Fitting lmer with categorical ratings predictor on box_cox_transformed outcomes ──
#> 
#> ── Fitting lmer with categorical ratings predictor on box_cox_transformed outcomes ──
#> 
#> ── Fitting lmer with categorical ratings predictor on box_cox_transformed outcomes ──
#> 
#> ── Fitting lmer with categorical ratings predictor on box_cox_transformed outcomes ──
#> 
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting lmer with categorical ratings predictor on box_cox_transformed outcomes ──
#> 
#> ── Fitting lmer with categorical ratings predictor on box_cox_transformed outcomes ──
#> 
#> ── Fitting lmer with categorical ratings predictor on box_cox_transformed outcomes ──
#> 
#> ── Fitting lmer with categorical ratings predictor on box_cox_transformed outcomes ──
#> 
#> ── Fitting lmer with categorical ratings predictor on box_cox_transformed outcomes ──
#> 
#> ── Fitting lmer with categorical ratings predictor on box_cox_transformed outcomes ──
#> 
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting lmer with categorical ratings predictor on box_cox_transformed outcomes ──
#> 
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting lmer with categorical ratings predictor on box_cox_transformed outcomes ──
#> 
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting lmer with categorical ratings predictor on box_cox_transformed outcomes ──
#> 
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting lmer with categorical ratings predictor on box_cox_transformed outcomes ──
#> 
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting lmer with categorical ratings predictor on box_cox_transformed outcomes ──
#> 
#> ── Fitting lmer with categorical ratings predictor on box_cox_transformed outcomes ──
#> 
#> ── Fitting lmer with categorical ratings predictor on box_cox_transformed outcomes ──
#> 
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting lmer with categorical ratings predictor on box_cox_transformed outcomes ──
#> 
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting lmer with categorical ratings predictor on box_cox_transformed outcomes ──
#> 
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting lmer with categorical ratings predictor on box_cox_transformed outcomes ──
#> 
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting lmer with categorical ratings predictor on box_cox_transformed outcomes ──
#> 
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting lmer with categorical ratings predictor on box_cox_transformed outcomes ──
#> 
#> ── Fitting lmer with categorical ratings predictor on box_cox_transformed outcomes ──
#> 
#> ── Fitting lmer with categorical ratings predictor on box_cox_transformed outcomes ──
#> 
#> ── Fitting lmer with categorical ratings predictor on box_cox_transformed outcomes ──
#> 
#> ── Fitting lmer with categorical ratings predictor on box_cox_transformed outcomes ──
#> 
#> ── Fitting lmer with categorical ratings predictor on box_cox_transformed outcomes ──
#> 
#> ── Fitting lmer with categorical ratings predictor on box_cox_transformed outcomes ──
#> 
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting lmer with categorical ratings predictor on box_cox_transformed outcomes ──
#> 
#> ── Fitting lmer with categorical ratings predictor on box_cox_transformed outcomes ──
#> 
#> ── Fitting lmer with categorical ratings predictor on box_cox_transformed outcomes ──
#> 
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting lmer with categorical ratings predictor on box_cox_transformed outcomes ──
#> 
#> ── Fitting lmer with categorical ratings predictor on box_cox_transformed outcomes ──
#> 
#> ── Fitting lmer with categorical ratings predictor on box_cox_transformed outcomes ──
#> 
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting lmer with categorical ratings predictor on box_cox_transformed outcomes ──
#> 
#> ── Fitting lmer with categorical ratings predictor on box_cox_transformed outcomes ──
#> 
#> ── Fitting lmer with categorical ratings predictor on box_cox_transformed outcomes ──
#> 
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting lmer with categorical ratings predictor on box_cox_transformed outcomes ──
#> 
#> ── Fitting lmer with categorical ratings predictor on box_cox_transformed outcomes ──
#> 
#> ── Fitting lmer with categorical ratings predictor on box_cox_transformed outcomes ──
#> 
#> ── Fitting lmer with categorical ratings predictor on box_cox_transformed outcomes ──
#> 
#> ── Fitting lmer with categorical ratings predictor on box_cox_transformed outcomes ──
#> 
#> ── Fitting lmer with categorical ratings predictor on box_cox_transformed outcomes ──
#> 
#> ── Fitting lmer with categorical ratings predictor on box_cox_transformed outcomes ──
#> 
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting lmer with categorical ratings predictor on box_cox_transformed outcomes ──
#> 
#> ── Fitting lmer with categorical ratings predictor on box_cox_transformed outcomes ──
#> 
#> ── Fitting lmer with categorical ratings predictor on box_cox_transformed outcomes ──
#> 
#> ── Fitting lmer with categorical ratings predictor on box_cox_transformed outcomes ──
#> 
#> ── Fitting lmer with categorical ratings predictor on box_cox_transformed outcomes ──
#> 
#> ── Fitting lmer with categorical ratings predictor on box_cox_transformed outcomes ──
#> 
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#> 
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#> 
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#> 
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#> 
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#> 
#> 
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#> 
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#> 
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#> 
#> 
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#> 
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#> 
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#> 
#> 
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#> 
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#> 
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#> 
#> 
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#> 
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#> 
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#> 
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#> 
#> 
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#> 
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#> 
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#> 
#> 
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#> 
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#> 
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#> 
#> 
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#> 
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#> 
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#> Warning: There were 61 warnings in `dplyr::mutate()`.
#> The first warning was:
#> ℹ In argument: `box_cox_rating_cont = purrr::map(...)`.
#> ℹ In group 1: `estimate_type = "Zr"`, `dataset = "blue tit"`, `exclusion_set =
#>   "complete"`, `publishable_subset = "All"`, `expertise_subset = "All"`.
#> Caused by warning in `optwrap()`:
#> ! convergence code -4 from nloptwrap: NLOPT_ROUNDOFF_LIMITED: Roundoff errors led to a breakdown of the optimization algorithm. In this case, the returned minimum may still be useful. (e.g. this error occurs in NEWUOA if one tries to achieve a tolerance too close to machine precision.)
#> ℹ Run `dplyr::last_dplyr_warnings()` to see the 60 remaining warnings.
d %>% pull_df(data) %>% map(dim)
#> $subset_complete
#> [1] 131  40
#> 
#> $subset_complete
#> [1] 117  40
d %>% pull_df(effects_analysis) %>% map(dim)
#> [[1]]
#> [1] 131  48
#> 
#> [[2]]
#> [1] 131  48

Created on 2024-06-14 with reprex v2.1.0

egouldo referenced this issue Jun 14, 2024
- update roxygen
- devtools::document()
- rebuild pkg
@egouldo
Copy link
Owner Author

egouldo commented Jun 14, 2024

65d4fd2 fixes issue:

library(ManyEcoEvo)
#> Warning: replacing previous import 'purrr::%@%' by 'rlang::%@%' when loading
#> 'ManyEcoEvo'
#> Warning: replacing previous import 'purrr::flatten_lgl' by 'rlang::flatten_lgl'
#> when loading 'ManyEcoEvo'
#> Warning: replacing previous import 'purrr::splice' by 'rlang::splice' when
#> loading 'ManyEcoEvo'
#> Warning: replacing previous import 'purrr::flatten_chr' by 'rlang::flatten_chr'
#> when loading 'ManyEcoEvo'
#> Warning: replacing previous import 'purrr::flatten_raw' by 'rlang::flatten_raw'
#> when loading 'ManyEcoEvo'
#> Warning: replacing previous import 'purrr::flatten' by 'rlang::flatten' when
#> loading 'ManyEcoEvo'
#> Warning: replacing previous import 'purrr::flatten_dbl' by 'rlang::flatten_dbl'
#> when loading 'ManyEcoEvo'
#> Warning: replacing previous import 'purrr::invoke' by 'rlang::invoke' when
#> loading 'ManyEcoEvo'
#> Warning: replacing previous import 'purrr::flatten_int' by 'rlang::flatten_int'
#> when loading 'ManyEcoEvo'
library(tidyverse)

pull_df <- function(x,y){
  x %>% 
    filter(dataset == "blue tit", 
           publishable_subset == "All", 
           expertise_subset == "All", 
           exclusion_set == "complete") %>% 
    pull({{y}})
}

a <- 
  ManyEcoEvo %>% 
  prepare_response_variables(estimate_type = "Zr") |>  
  generate_exclusion_subsets(estimate_type = "Zr") |> 
  generate_rating_subsets() |> 
  generate_expertise_subsets(ManyEcoEvo:::expert_subset) %>% 
  generate_collinearity_subset(ManyEcoEvo:::collinearity_subset)
#> 
#> ── Applying exclusion rules and generating exclusion subsets ───────────────────
#> 
#> ── Computing meta-analysis inputsfor estimate type Zr ──────────────────────────
#> 
#> ── Computing standardised effect sizes `Zr` and variance `VZr` ──
#> 
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df 484.0193.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df 666.56874.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df 590.18263.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.006225,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.003996,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df 481.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.09247,
#> 3. adjusted_df 316.17526.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.029,
#> 3. adjusted_df 366.3.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.042,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.01416305,
#> 3. adjusted_df 257.905.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.030382264,
#> 3. adjusted_df 2372.82.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.01409,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.008781,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.014853,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.000769,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.033978443,
#> 3. adjusted_df 347.4992526.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.01823188,
#> 3. adjusted_df 55.44391.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.02039768,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.02496,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.03575,
#> 3. adjusted_df NA.
#> 
#> ── Computing meta-analysis inputsfor estimate type Zr ──────────────────────────
#> 
#> ── Computing standardised effect sizes `Zr` and variance `VZr` ──
#> 
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.29212,
#> 3. adjusted_df 21.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.007831,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.07216,
#> 3. adjusted_df 0.560867697.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.57,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.2328,
#> 3. adjusted_df 343.24787.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.3188723,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.0059286,
#> 3. adjusted_df 1.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.007385,
#> 3. adjusted_df 3.5e-25.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.052462,
#> 3. adjusted_df 3.5e-25.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.605,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 8.98,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 7.97,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 5.19,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 18.5,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 5.92,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.529,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 2.89,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.605,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.01312667,
#> 3. adjusted_df -2.6269353.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.197,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.192,
#> 3. adjusted_df 82.703.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.1,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.0048042,
#> 3. adjusted_df 341.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.21,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.5756016,
#> 3. adjusted_df 3.536992.
#> Joining with `by = join_by(id_col, dataset)`
#> Joining with `by = join_by(id_col, dataset)`
#> Joining with `by = join_by(id_col, dataset)`
#> Joining with `by = join_by(id_col, dataset)`
#> Joining with `by = join_by(id_col)`
#> Joining with `by = join_by(id_col)`
#> Joining with `by = join_by(id_col)`
#> Joining with `by = join_by(id_col)`
#> Joining with `by = join_by(id_col)`
#> Joining with `by = join_by(id_col)`
#> Joining with `by = join_by(id_col)`
#> Joining with `by = join_by(id_col)`
#> Joining with `by = join_by(response_id)`
#> Joining with `by = join_by(response_id)`
#> Joining with `by = join_by(id_col, dataset)`
#> Joining with `by = join_by(id_col, dataset)`
b <- 
  a %>% 
  compute_MA_inputs(estimate_type = "Zr") 
#> Joining with `by = join_by(id_col, num_variables)`
#> Joining with `by = join_by(id_col)`
#> Joining with `by = join_by(id_col)`
#> Joining with `by = join_by(id_col, num_variables)`
#> Joining with `by = join_by(id_col, num_variables)`
#> Joining with `by = join_by(id_col, num_variables)`
#> Joining with `by = join_by(id_col)`
#> Joining with `by = join_by(id_col)`
#> Joining with `by = join_by(id_col, num_variables)`
#> Joining with `by = join_by(id_col)`
#> Joining with `by = join_by(id_col)`
#> Joining with `by = join_by(id_col, num_variables)`
#> Joining with `by = join_by(id_col, num_variables)`
#> Joining with `by = join_by(id_col)`
#> Joining with `by = join_by(id_col)`
b %>% 
  pull_df(data) %>% map(dim)
#> $subset_complete
#> [1] 131  40
#> 
#> $subset_complete
#> [1] 117  40
b %>% 
  pull_df(effects_analysis) %>% map(dim)
#> $subset_complete
#> [1] 131  42
#> 
#> $subset_complete
#> [1] 117  42
c <- b %>%   generate_outlier_subsets()
#> Joining with `by = join_by(id_col, dataset)`
#> Joining with `by = join_by(id_col)`
#> Joining with `by = join_by(id_col)`
#> Joining with `by = join_by(id_col, dataset)`
#> Joining with `by = join_by(id_col, dataset)`
#> Joining with `by = join_by(id_col)`
#> Joining with `by = join_by(id_col)`
#> Joining with `by = join_by(id_col, dataset)`
#> Joining with `by = join_by(id_col, dataset)`
#> Joining with `by = join_by(id_col)`
#> Joining with `by = join_by(id_col)`
#> Joining with `by = join_by(id_col, dataset)`
#> Joining with `by = join_by(id_col)`
#> Joining with `by = join_by(id_col)`
c %>% 
  pull_df(data) %>% map(dim)
#> $subset_complete
#> [1] 131  40
#> 
#> $subset_complete
#> [1] 117  40
c %>% 
  pull_df(effects_analysis) %>% map(dim)
#> $subset_complete
#> [1] 131  42
#> 
#> $subset_complete
#> [1] 117  42
d <- c %>% 
  filter(expertise_subset != "expert" | exclusion_set != "complete-rm_outliers") |> #TODO mv into generate_outlier_subsets() so aren't created in the first place
  meta_analyse_datasets()
#> 
#> ── Meta-analysing Datasets ─────────────────────────────────────────────────────
#> 
#> ── Fitting multivariate metaregression ──
#> 
#> ── Fitting multivariate metaregression ──
#> 
#> ── Fitting multivariate metaregression ──
#> 
#> ── Fitting multivariate metaregression ──
#> 
#> ── Fitting multivariate metaregression ──
#> 
#> ── Fitting multivariate metaregression ──
#> 
#> ── Fitting multivariate metaregression ──
#> 
#> ── Fitting multivariate metaregression ──
#> 
#> ── Fitting multivariate metaregression ──
#> 
#> ── Fitting multivariate metaregression ──
#> 
#> ── Fitting multivariate metaregression ──
#> 
#> ── Fitting multivariate metaregression ──
#> 
#> ── Fitting multivariate metaregression ──
#> 
#> ── Fitting multivariate metaregression ──
#> 
#> ── Fitting multivariate metaregression ──
#> 
#> ── Fitting multivariate metaregression ──
#> 
#> ── Fitting multivariate metaregression ──
#> 
#> ── Fitting multivariate metaregression ──
#> 
#> ── Fitting multivariate metaregression ──
#> 
#> ── Fitting multivariate metaregression ──
#> 
#> ── Fitting multivariate metaregression ──
#> 
#> ── Fitting multivariate metaregression ──
#> 
#> ── Fitting multivariate metaregression ──
#> 
#> ── Fitting multivariate metaregression ──
#> 
#> ── Fitting multivariate metaregression ──
#> 
#> ── Fitting multivariate metaregression ──
#> 
#> ── Fitting multivariate metaregression ──
#> 
#> ── Calculating absolute deviation scores from standardised effect sizes ──
#> 
#> ── Calculating absolute deviation scores from standardised effect sizes ──
#> 
#> ── Calculating absolute deviation scores from standardised effect sizes ──
#> 
#> ── Calculating absolute deviation scores from standardised effect sizes ──
#> 
#> ── Calculating absolute deviation scores from standardised effect sizes ──
#> 
#> ── Calculating absolute deviation scores from standardised effect sizes ──
#> 
#> ── Calculating absolute deviation scores from standardised effect sizes ──
#> 
#> ── Calculating absolute deviation scores from standardised effect sizes ──
#> 
#> ── Calculating absolute deviation scores from standardised effect sizes ──
#> 
#> ── Calculating absolute deviation scores from standardised effect sizes ──
#> 
#> ── Calculating absolute deviation scores from standardised effect sizes ──
#> 
#> ── Calculating absolute deviation scores from standardised effect sizes ──
#> 
#> ── Calculating absolute deviation scores from standardised effect sizes ──
#> 
#> ── Calculating absolute deviation scores from standardised effect sizes ──
#> 
#> ── Calculating absolute deviation scores from standardised effect sizes ──
#> 
#> ── Calculating absolute deviation scores from standardised effect sizes ──
#> 
#> ── Calculating absolute deviation scores from standardised effect sizes ──
#> 
#> ── Calculating absolute deviation scores from standardised effect sizes ──
#> 
#> ── Calculating absolute deviation scores from standardised effect sizes ──
#> 
#> ── Calculating absolute deviation scores from standardised effect sizes ──
#> 
#> ── Calculating absolute deviation scores from standardised effect sizes ──
#> 
#> ── Calculating absolute deviation scores from standardised effect sizes ──
#> 
#> ── Calculating absolute deviation scores from standardised effect sizes ──
#> 
#> ── Calculating absolute deviation scores from standardised effect sizes ──
#> 
#> ── Calculating absolute deviation scores from standardised effect sizes ──
#> 
#> ── Calculating absolute deviation scores from standardised effect sizes ──
#> 
#> ── Calculating absolute deviation scores from standardised effect sizes ──
#> 
#> ── Box-cox transforming absolute deviation scores for blue tit ──
#> 
#> Registered S3 method overwritten by 'lava':
#>   method         from    
#>   print.estimate EnvStats
#> Registered S3 method overwritten by 'quantmod':
#>   method            from
#>   as.zoo.data.frame zoo 
#> ℹ Optimised Lambda used in Box-Cox Transformation of blue tit dataset variables is 0.2731 for `abs_deviation_score_estimate`.
#> 
#> ── Box-cox transforming absolute deviation scores for blue tit ──
#> 
#> ℹ Optimised Lambda used in Box-Cox Transformation of blue tit dataset variables is 0.5126 for `abs_deviation_score_estimate`.
#> 
#> ── Box-cox transforming absolute deviation scores for blue tit ──
#> 
#> ℹ Optimised Lambda used in Box-Cox Transformation of blue tit dataset variables is 0.2093 for `abs_deviation_score_estimate`.
#> 
#> ── Box-cox transforming absolute deviation scores for blue tit ──
#> 
#> ℹ Optimised Lambda used in Box-Cox Transformation of blue tit dataset variables is 0.5529 for `abs_deviation_score_estimate`.
#> 
#> ── Box-cox transforming absolute deviation scores for blue tit ──
#> 
#> ℹ Optimised Lambda used in Box-Cox Transformation of blue tit dataset variables is 0.0153 for `abs_deviation_score_estimate`.
#> 
#> ── Box-cox transforming absolute deviation scores for blue tit ──
#> 
#> ℹ Optimised Lambda used in Box-Cox Transformation of blue tit dataset variables is 0.6351 for `abs_deviation_score_estimate`.
#> 
#> ── Box-cox transforming absolute deviation scores for blue tit ──
#> 
#> ℹ Optimised Lambda used in Box-Cox Transformation of blue tit dataset variables is 0.7593 for `abs_deviation_score_estimate`.
#> 
#> ── Box-cox transforming absolute deviation scores for blue tit ──
#> 
#> ℹ Optimised Lambda used in Box-Cox Transformation of blue tit dataset variables is 1.0478 for `abs_deviation_score_estimate`.
#> 
#> ── Box-cox transforming absolute deviation scores for blue tit ──
#> 
#> ℹ Optimised Lambda used in Box-Cox Transformation of blue tit dataset variables is 0.1757 for `abs_deviation_score_estimate`.
#> 
#> ── Box-cox transforming absolute deviation scores for blue tit ──
#> 
#> ℹ Optimised Lambda used in Box-Cox Transformation of blue tit dataset variables is 0.154 for `abs_deviation_score_estimate`.
#> 
#> ── Box-cox transforming absolute deviation scores for blue tit ──
#> 
#> ℹ Optimised Lambda used in Box-Cox Transformation of blue tit dataset variables is 0.0153 for `abs_deviation_score_estimate`.
#> 
#> ── Box-cox transforming absolute deviation scores for blue tit ──
#> 
#> ℹ Optimised Lambda used in Box-Cox Transformation of blue tit dataset variables is 0.6344 for `abs_deviation_score_estimate`.
#> 
#> ── Box-cox transforming absolute deviation scores for blue tit ──
#> 
#> ℹ Optimised Lambda used in Box-Cox Transformation of blue tit dataset variables is 0.8497 for `abs_deviation_score_estimate`.
#> 
#> ── Box-cox transforming absolute deviation scores for blue tit ──
#> 
#> ℹ Optimised Lambda used in Box-Cox Transformation of blue tit dataset variables is 1.0478 for `abs_deviation_score_estimate`.
#> 
#> ── Box-cox transforming absolute deviation scores for eucalyptus ──
#> 
#> ℹ Optimised Lambda used in Box-Cox Transformation of eucalyptus dataset variables is 1e-04 for `abs_deviation_score_estimate`.
#> 
#> ── Box-cox transforming absolute deviation scores for eucalyptus ──
#> 
#> ℹ Optimised Lambda used in Box-Cox Transformation of eucalyptus dataset variables is 1e-04 for `abs_deviation_score_estimate`.
#> 
#> ── Box-cox transforming absolute deviation scores for eucalyptus ──
#> 
#> ℹ Optimised Lambda used in Box-Cox Transformation of eucalyptus dataset variables is 1e-04 for `abs_deviation_score_estimate`.
#> 
#> ── Box-cox transforming absolute deviation scores for eucalyptus ──
#> 
#> ℹ Optimised Lambda used in Box-Cox Transformation of eucalyptus dataset variables is 1e-04 for `abs_deviation_score_estimate`.
#> 
#> ── Box-cox transforming absolute deviation scores for eucalyptus ──
#> 
#> ℹ Optimised Lambda used in Box-Cox Transformation of eucalyptus dataset variables is 0.1373 for `abs_deviation_score_estimate`.
#> 
#> ── Box-cox transforming absolute deviation scores for eucalyptus ──
#> 
#> ℹ Optimised Lambda used in Box-Cox Transformation of eucalyptus dataset variables is 0.3943 for `abs_deviation_score_estimate`.
#> 
#> ── Box-cox transforming absolute deviation scores for eucalyptus ──
#> 
#> ℹ Optimised Lambda used in Box-Cox Transformation of eucalyptus dataset variables is 1.5842 for `abs_deviation_score_estimate`.
#> 
#> ── Box-cox transforming absolute deviation scores for eucalyptus ──
#> 
#> ℹ Optimised Lambda used in Box-Cox Transformation of eucalyptus dataset variables is 1e-04 for `abs_deviation_score_estimate`.
#> 
#> ── Box-cox transforming absolute deviation scores for eucalyptus ──
#> 
#> ℹ Optimised Lambda used in Box-Cox Transformation of eucalyptus dataset variables is 1e-04 for `abs_deviation_score_estimate`.
#> 
#> ── Box-cox transforming absolute deviation scores for eucalyptus ──
#> 
#> ℹ Optimised Lambda used in Box-Cox Transformation of eucalyptus dataset variables is 1e-04 for `abs_deviation_score_estimate`.
#> 
#> ── Box-cox transforming absolute deviation scores for eucalyptus ──
#> 
#> ℹ Optimised Lambda used in Box-Cox Transformation of eucalyptus dataset variables is 1e-04 for `abs_deviation_score_estimate`.
#> 
#> ── Box-cox transforming absolute deviation scores for eucalyptus ──
#> 
#> ℹ Optimised Lambda used in Box-Cox Transformation of eucalyptus dataset variables is 0.4433 for `abs_deviation_score_estimate`.
#> 
#> ── Box-cox transforming absolute deviation scores for eucalyptus ──
#> 
#> ℹ Optimised Lambda used in Box-Cox Transformation of eucalyptus dataset variables is 0.4887 for `abs_deviation_score_estimate`.
#> 
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#> 
#> ℹ Zrblue titcompleteAllAllAll
#> Registered S3 method overwritten by 'parsnip':
#>   method          from 
#>   print.nullmodel vegan
#> 
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#> 
#> ℹ Zrblue titcompleteAllAllcollinearity_removed
#> 
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#> 
#> ℹ Zrblue titcompleteAllexpertAll
#> 
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#> 
#> ℹ Zrblue titcompletedata_flawedAllAll
#> 
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#> 
#> ℹ Zrblue titcompletedata_flawed_majorAllAll
#> 
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#> 
#> ℹ Zrblue titcomplete-rm_outliersAllAllAll
#> 
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#> 
#> ℹ Zrblue titcomplete-rm_outliersdata_flawedAllAll
#> 
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#> 
#> ℹ Zrblue titcomplete-rm_outliersdata_flawed_majorAllAll
#> 
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#> 
#> ℹ Zrblue titpartialAllAllAll
#> 
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#> 
#> ℹ Zrblue titpartialdata_flawedAllAll
#> 
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#> 
#> ℹ Zrblue titpartialdata_flawed_majorAllAll
#> 
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#> 
#> ℹ Zrblue titpartial-rm_outliersAllAllAll
#> 
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#> 
#> ℹ Zrblue titpartial-rm_outliersdata_flawedAllAll
#> 
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#> 
#> ℹ Zrblue titpartial-rm_outliersdata_flawed_majorAllAll
#> 
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#> 
#> ℹ ZreucalyptuscompleteAllAllAll
#> 
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#> 
#> ℹ ZreucalyptuscompleteAllexpertAll
#> 
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#> 
#> ℹ Zreucalyptuscompletedata_flawedAllAll
#> 
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#> 
#> ℹ Zreucalyptuscompletedata_flawed_majorAllAll
#> 
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#> 
#> ℹ Zreucalyptuscomplete-rm_outliersAllAllAll
#> 
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#> 
#> ℹ Zreucalyptuscomplete-rm_outliersdata_flawedAllAll
#> 
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#> 
#> ℹ Zreucalyptuscomplete-rm_outliersdata_flawed_majorAllAll
#> 
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#> 
#> ℹ ZreucalyptuspartialAllAllAll
#> 
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#> 
#> ℹ Zreucalyptuspartialdata_flawedAllAll
#> 
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#> 
#> ℹ Zreucalyptuspartialdata_flawed_majorAllAll
#> 
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#> 
#> ℹ Zreucalyptuspartial-rm_outliersAllAllAll
#> 
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#> 
#> ℹ Zreucalyptuspartial-rm_outliersdata_flawedAllAll
#> 
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#> 
#> ℹ Zreucalyptuspartial-rm_outliersdata_flawed_majorAllAll
#> 
#> ── Fitting metaregression with continuous ratings predictor on box_cox_transformed outcomes ──
#> 
#> ── Fitting metaregression with continuous ratings predictor on box_cox_transformed outcomes ──
#> 
#> ── Fitting metaregression with continuous ratings predictor on box_cox_transformed outcomes ──
#> 
#> ── Fitting metaregression with continuous ratings predictor on box_cox_transformed outcomes ──
#> 
#> ── Fitting metaregression with continuous ratings predictor on box_cox_transformed outcomes ──
#> 
#> ── Fitting metaregression with continuous ratings predictor on box_cox_transformed outcomes ──
#> 
#> ── Fitting metaregression with continuous ratings predictor on box_cox_transformed outcomes ──
#> 
#> ── Fitting metaregression with continuous ratings predictor on box_cox_transformed outcomes ──
#> 
#> ── Fitting metaregression with continuous ratings predictor on box_cox_transformed outcomes ──
#> 
#> ── Fitting metaregression with continuous ratings predictor on box_cox_transformed outcomes ──
#> 
#> ── Fitting metaregression with continuous ratings predictor on box_cox_transformed outcomes ──
#> 
#> ── Fitting metaregression with continuous ratings predictor on box_cox_transformed outcomes ──
#> 
#> ── Fitting metaregression with continuous ratings predictor on box_cox_transformed outcomes ──
#> 
#> ── Fitting metaregression with continuous ratings predictor on box_cox_transformed outcomes ──
#> 
#> ── Fitting metaregression with continuous ratings predictor on box_cox_transformed outcomes ──
#> 
#> ── Fitting metaregression with continuous ratings predictor on box_cox_transformed outcomes ──
#> 
#> ── Fitting metaregression with continuous ratings predictor on box_cox_transformed outcomes ──
#> 
#> ── Fitting metaregression with continuous ratings predictor on box_cox_transformed outcomes ──
#> 
#> ── Fitting metaregression with continuous ratings predictor on box_cox_transformed outcomes ──
#> 
#> ── Fitting metaregression with continuous ratings predictor on box_cox_transformed outcomes ──
#> 
#> ── Fitting metaregression with continuous ratings predictor on box_cox_transformed outcomes ──
#> 
#> ── Fitting metaregression with continuous ratings predictor on box_cox_transformed outcomes ──
#> 
#> ── Fitting metaregression with continuous ratings predictor on box_cox_transformed outcomes ──
#> 
#> ── Fitting metaregression with continuous ratings predictor on box_cox_transformed outcomes ──
#> 
#> ── Fitting metaregression with continuous ratings predictor on box_cox_transformed outcomes ──
#> 
#> ── Fitting metaregression with continuous ratings predictor on box_cox_transformed outcomes ──
#> 
#> ── Fitting metaregression with continuous ratings predictor on box_cox_transformed outcomes ──
#> 
#> ── Fitting lmer with categorical ratings predictor on box_cox_transformed outcomes ──
#> 
#> ── Fitting lmer with categorical ratings predictor on box_cox_transformed outcomes ──
#> 
#> ── Fitting lmer with categorical ratings predictor on box_cox_transformed outcomes ──
#> 
#> ── Fitting lmer with categorical ratings predictor on box_cox_transformed outcomes ──
#> 
#> ── Fitting lmer with categorical ratings predictor on box_cox_transformed outcomes ──
#> 
#> ── Fitting lmer with categorical ratings predictor on box_cox_transformed outcomes ──
#> 
#> ── Fitting lmer with categorical ratings predictor on box_cox_transformed outcomes ──
#> 
#> ── Fitting lmer with categorical ratings predictor on box_cox_transformed outcomes ──
#> 
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting lmer with categorical ratings predictor on box_cox_transformed outcomes ──
#> 
#> ── Fitting lmer with categorical ratings predictor on box_cox_transformed outcomes ──
#> 
#> ── Fitting lmer with categorical ratings predictor on box_cox_transformed outcomes ──
#> 
#> ── Fitting lmer with categorical ratings predictor on box_cox_transformed outcomes ──
#> 
#> ── Fitting lmer with categorical ratings predictor on box_cox_transformed outcomes ──
#> 
#> ── Fitting lmer with categorical ratings predictor on box_cox_transformed outcomes ──
#> 
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting lmer with categorical ratings predictor on box_cox_transformed outcomes ──
#> 
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting lmer with categorical ratings predictor on box_cox_transformed outcomes ──
#> 
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting lmer with categorical ratings predictor on box_cox_transformed outcomes ──
#> 
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting lmer with categorical ratings predictor on box_cox_transformed outcomes ──
#> 
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting lmer with categorical ratings predictor on box_cox_transformed outcomes ──
#> 
#> ── Fitting lmer with categorical ratings predictor on box_cox_transformed outcomes ──
#> 
#> ── Fitting lmer with categorical ratings predictor on box_cox_transformed outcomes ──
#> 
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting lmer with categorical ratings predictor on box_cox_transformed outcomes ──
#> 
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting lmer with categorical ratings predictor on box_cox_transformed outcomes ──
#> 
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting lmer with categorical ratings predictor on box_cox_transformed outcomes ──
#> 
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting lmer with categorical ratings predictor on box_cox_transformed outcomes ──
#> 
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting lmer with categorical ratings predictor on box_cox_transformed outcomes ──
#> 
#> ── Fitting lmer with categorical ratings predictor on box_cox_transformed outcomes ──
#> 
#> ── Fitting lmer with categorical ratings predictor on box_cox_transformed outcomes ──
#> 
#> ── Fitting lmer with categorical ratings predictor on box_cox_transformed outcomes ──
#> 
#> ── Fitting lmer with categorical ratings predictor on box_cox_transformed outcomes ──
#> 
#> ── Fitting lmer with categorical ratings predictor on box_cox_transformed outcomes ──
#> 
#> ── Fitting lmer with categorical ratings predictor on box_cox_transformed outcomes ──
#> 
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting lmer with categorical ratings predictor on box_cox_transformed outcomes ──
#> 
#> ── Fitting lmer with categorical ratings predictor on box_cox_transformed outcomes ──
#> 
#> ── Fitting lmer with categorical ratings predictor on box_cox_transformed outcomes ──
#> 
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting lmer with categorical ratings predictor on box_cox_transformed outcomes ──
#> 
#> ── Fitting lmer with categorical ratings predictor on box_cox_transformed outcomes ──
#> 
#> ── Fitting lmer with categorical ratings predictor on box_cox_transformed outcomes ──
#> 
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting lmer with categorical ratings predictor on box_cox_transformed outcomes ──
#> 
#> ── Fitting lmer with categorical ratings predictor on box_cox_transformed outcomes ──
#> 
#> ── Fitting lmer with categorical ratings predictor on box_cox_transformed outcomes ──
#> 
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting lmer with categorical ratings predictor on box_cox_transformed outcomes ──
#> 
#> ── Fitting lmer with categorical ratings predictor on box_cox_transformed outcomes ──
#> 
#> ── Fitting lmer with categorical ratings predictor on box_cox_transformed outcomes ──
#> 
#> ── Fitting lmer with categorical ratings predictor on box_cox_transformed outcomes ──
#> 
#> ── Fitting lmer with categorical ratings predictor on box_cox_transformed outcomes ──
#> 
#> ── Fitting lmer with categorical ratings predictor on box_cox_transformed outcomes ──
#> 
#> ── Fitting lmer with categorical ratings predictor on box_cox_transformed outcomes ──
#> 
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting lmer with categorical ratings predictor on box_cox_transformed outcomes ──
#> 
#> ── Fitting lmer with categorical ratings predictor on box_cox_transformed outcomes ──
#> 
#> ── Fitting lmer with categorical ratings predictor on box_cox_transformed outcomes ──
#> 
#> ── Fitting lmer with categorical ratings predictor on box_cox_transformed outcomes ──
#> 
#> ── Fitting lmer with categorical ratings predictor on box_cox_transformed outcomes ──
#> 
#> ── Fitting lmer with categorical ratings predictor on box_cox_transformed outcomes ──
#> 
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#> 
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#> 
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#> 
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#> 
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#> 
#> 
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#> 
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#> 
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#> 
#> 
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#> 
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#> 
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#> 
#> 
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#> 
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#> 
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#> 
#> 
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#> 
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#> 
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#> 
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#> 
#> 
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#> 
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#> 
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#> 
#> 
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#> 
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#> 
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#> 
#> 
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#> 
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#> 
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#> Warning: There were 62 warnings in `dplyr::mutate()`.
#> The first warning was:
#> ℹ In argument: `box_cox_rating_cont = purrr::map(...)`.
#> ℹ In group 1: `estimate_type = "Zr"`, `dataset = "blue tit"`, `exclusion_set =
#>   "complete"`, `publishable_subset = "All"`, `expertise_subset = "All"`,
#>   `collinearity_subset = "All"`.
#> Caused by warning in `optwrap()`:
#> ! convergence code -4 from nloptwrap: NLOPT_ROUNDOFF_LIMITED: Roundoff errors led to a breakdown of the optimization algorithm. In this case, the returned minimum may still be useful. (e.g. this error occurs in NEWUOA if one tries to achieve a tolerance too close to machine precision.)
#> ℹ Run `dplyr::last_dplyr_warnings()` to see the 61 remaining warnings.
d %>% pull_df(data) %>% map(dim)
#> $subset_complete
#> [1] 131  40
#> 
#> $subset_complete
#> [1] 117  40
d %>% pull_df(effects_analysis) %>% map(dim)
#> [[1]]
#> [1] 131  48
#> 
#> [[2]]
#> [1] 117  48

Created on 2024-06-14 with reprex v2.1.0

egouldo added a commit that referenced this issue Jun 14, 2024
- rerun tar_make()
- rebuild package with updated data
@egouldo egouldo reopened this Jul 29, 2024
@egouldo
Copy link
Owner Author

egouldo commented Jul 29, 2024

From #29 noticed issues where pipeline functions are missing a level of grouping for applying Zr functions! (i.e. group_by() calls are missing collinearity_subset !

egouldo added a commit that referenced this issue Jul 29, 2024
@egouldo egouldo pinned this issue Jul 29, 2024
@egouldo
Copy link
Owner Author

egouldo commented Aug 10, 2024

Potentially related to #75 ??

@egouldo
Copy link
Owner Author

egouldo commented Aug 28, 2024

Double check after updates on #121

@egouldo
Copy link
Owner Author

egouldo commented Sep 10, 2024

Issue is resolved:

Local .Rprofile detected at /Users/elliotgould/Documents/GitHub/ManyEcoEvo/.Rprofile

library(tidyverse)

dim_data <-
  targets::tar_read(ManyEcoEvo_results) %>%
  select(ends_with("set")) %>%
  bind_cols(targets::tar_read(ManyEcoEvo_results) %>% pull(data) %>% map_dfr(~ dim(.x) %>%
    set_names(c("rows", "cols")) %>%
    as_tibble_row()))
#> Registered S3 method overwritten by 'parsnip':
#>   method          from 
#>   print.nullmodel vegan
#> Registered S3 method overwritten by 'lava':
#>   method         from    
#>   print.estimate EnvStats

dim_effects_analysis <-
  targets::tar_read(ManyEcoEvo_results) %>%
  select(ends_with("set")) %>%
  bind_cols(targets::tar_read(ManyEcoEvo_results) %>% pull(effects_analysis) %>% map_dfr(~ dim(.x) %>%
    set_names(c("rows", "cols")) %>%
    as_tibble_row()))

left_join(dim_data, dim_effects_analysis, by = join_by(exclusion_set, dataset, publishable_subset, expertise_subset, collinearity_subset)) %>%
  select(-contains("cols")) %>%
  mutate(difference = rows.x == rows.y) %>%
  filter(difference) %>%
  knitr::kable()
exclusion_set dataset publishable_subset expertise_subset collinearity_subset rows.x rows.y difference
complete blue tit All All All 131 131 TRUE
complete eucalyptus All All All 79 79 TRUE
partial blue tit All All All 118 118 TRUE
partial eucalyptus All All All 70 70 TRUE
complete blue tit data_flawed All All 109 109 TRUE
complete blue tit data_flawed_major All All 32 32 TRUE
complete eucalyptus data_flawed All All 55 55 TRUE
complete eucalyptus data_flawed_major All All 13 13 TRUE
partial blue tit data_flawed All All 100 100 TRUE
partial blue tit data_flawed_major All All 32 32 TRUE
partial eucalyptus data_flawed All All 52 52 TRUE
partial eucalyptus data_flawed_major All All 10 10 TRUE
complete blue tit All expert All 89 89 TRUE
complete eucalyptus All expert All 34 34 TRUE
complete blue tit All All collinearity_removed 117 117 TRUE
complete-rm_outliers blue tit All All All 127 127 TRUE
complete-rm_outliers eucalyptus All All All 75 75 TRUE
partial-rm_outliers blue tit All All All 114 114 TRUE
partial-rm_outliers eucalyptus All All All 66 66 TRUE

Created on 2024-09-10 with reprex v2.1.0

@egouldo egouldo closed this as completed Sep 10, 2024
@egouldo egouldo unpinned this issue Oct 9, 2024
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
bug an unexpected problem or unintended behavior
Projects
None yet
Development

Successfully merging a pull request may close this issue.

1 participant