Updates | Datasets | Models | Environment | Running | Results | Website | Paper
Authors: Kuan-Hao Huang, I-Hung Hsu, Tanmay Parekh, Zhiyu Xie, Zixuan Zhang, Premkumar Natarajan, Kai-Wei Chang, Nanyun Peng, Heng Ji
TextEE is a standardized, fair, and reproducible benchmark for evaluating event extraction approaches.
- Standardized data preprocessing for 10+ datasets.
- Standardized data splits for reducing performance variance.
- 10+ implemented event extraction approaches published in recent years.
- Comprehensive reevaluation results for future references.
Please check mroe details our paper TextEE: Benchmark, Reevaluation, Reflections, and Future Challenges in Event Extraction. We will keep adding new datasets and new models!
- [04/21/2024] TextEE supports two more datasets: SPEED and MUC-4.
- [02/23/2024] TextEE supports the CEDAR approach now.
- [12/26/2023] TextEE supports three more datasets: MLEE, Genia2011, Genia2013.
- [11/15/2023] We release TextEE, a framework for reevaluation and benchmark for event extraction. Feel free to contact us (khhuang@illinois.edu) if you want to contribute your models or datasets!
Dataset Name | Task | Paper Title | Venue |
---|---|---|---|
ACE05 |
E2E, ED, EAE | The Automatic Content Extraction (ACE) Program - Tasks, Data, and Evaluation | LREC 2004 |
ERE |
E2E, ED, EAE | From Light to Rich ERE: Annotation of Entities, Relations, and Events | EVENTS@NAACL 2015 |
MLEE |
E2E, ED, EAE | Event extraction across multiple levels of biological organization | Bioinformatics 2012 |
Genia2011 |
E2E, ED, EAE | Overview of Genia Event Task in BioNLP Shared Task 2011 | BioNLP Shared Task 2011 Workshop |
Genia2013 |
E2E, ED, EAE | The Genia Event Extraction Shared Task, 2013 Edition - Overview | BioNLP Shared Task 2013 Workshop |
M2E2 |
E2E, ED, EAE | Cross-media Structured Common Space for Multimedia Event Extraction | ACL 2020 |
CASIE |
E2E, ED, EAE | CASIE: Extracting Cybersecurity Event Information from Text | AAAI 2020 |
PHEE |
E2E, ED, EAE | PHEE: A Dataset for Pharmacovigilance Event Extraction from Text | EMNLP 2022 |
MEE |
ED | MEE: A Novel Multilingual Event Extraction Dataset | EMNLP 2022 |
FewEvent |
ED | Meta-Learning with Dynamic-Memory-Based Prototypical Network for Few-Shot Event Detection | WSDM 2020 |
MAVEN |
ED | MAVEN: A Massive General Domain Event Detection Dataset | EMNLP 2020 |
SPPED |
ED | Event Detection from Social Media for Epidemic Prediction | NAACL 2024 |
MUC-4 |
EAE | Fourth Message Understanding Conference | MUC-4 1992 |
RAMS |
EAE | Multi-Sentence Argument Linking | ACL 2020 |
WikiEvents |
EAE | Document-Level Event Argument Extraction by Conditional Generation | NAACL 2021 |
GENEVA |
EAE | GENEVA: Benchmarking Generalizability for Event Argument Extraction with Hundreds of Event Types and Argument Roles | ACL 2023 |
Model Name | Task | Paper Title | Venue |
---|---|---|---|
DyGIE++ |
E2E | Entity, Relation, and Event Extraction with Contextualized Span Representations | EMNLP 2019 |
OneIE |
E2E | A Joint Neural Model for Information Extraction with Global Features | ACL 2020 |
AMR-IE |
E2E | Abstract Meaning Representation Guided Graph Encoding and Decoding for Joint Information Extraction | NAACL 2021 |
DEGREE |
E2E, ED, EAE | DEGREE: A Data-Efficient Generation-Based Event Extraction Model | NAACL 2022 |
EEQA |
ED, EAE | Event Extraction by Answering (Almost) Natural Questions | EMNLP 2020 |
RCEE |
ED, EAE | Event Extraction as Machine Reading Comprehension | EMNLP 2020 |
Query&Extract |
ED, EAE | Query and Extract: Refining Event Extraction as Type-oriented Binary Decoding | ACL-Findings 2022 |
TagPrime |
ED, EAE | TAGPRIME: A Unified Framework for Relational Structure Extraction | ACL 2023 |
UniST |
ED | Unified Semantic Typing with Meaningful Label Inference | NAACL 2022 |
CEDAR |
ED | GLEN: General-Purpose Event Detection for Thousands of Types | EMNLP 2023 |
BART-Gen |
EAE | Document-Level Event Argument Extraction by Conditional Generation | NAACL 2021 |
PAIE |
EAE | Prompt for Extraction? PAIE: Prompting Argument Interaction for Event Argument Extraction | ACL 2022 |
X-Gear |
EAE | Multilingual Generative Language Models for Zero-Shot Cross-Lingual Event Argument Extraction | ACL 2022 |
AMPERE |
EAE | AMPERE: AMR-Aware Prefix for Generation-Based Event Argument Extraction Model | ACL 2023 |
Please check here.
- Please install the following packages from both conda and pip.
conda install
- python 3.8
- pytorch 2.0.1
- numpy 1.24.3
- ipdb 0.13.13
- tqdm 4.65.0
- beautifulsoup4 4.11.1
- lxml 4.9.1
- jsonlines 3.1.0
- jsonnet 0.20.0
- stanza=1.5.0
pip install
- transformers 4.30.0
- sentencepiece 0.1.96
- scipy 1.5.4
- spacy 3.1.4
- nltk 3.8.1
- tensorboardX 2.6
- keras-preprocessing 1.1.2
- keras 2.4.3
- dgl-cu111 0.6.1
- amrlib 0.7.1
- cached_property 1.5.2
- typing-extensions 4.4.0
- penman==1.2.2
Alternatively, you can use the following command.
conda env create -f env.yml
- Run the following command.
python -m spacy download en_core_web_lg
./scripts/train.sh [config]
# Evaluating End-to-End
python TextEE/evaluate_end2end.py --task E2E --data [eval_data] --model [saved_model_folder]
# Evaluating EAE
python TextEE/evaluate_end2end.py --task EAE --data [eval_data] --model [saved_model_folder]
# Evaluating ED
python TextEE/evaluate_pipeline.py --task ED --data [eval_data] --ed_model [saved_model_folder]
# Evaluating EAE
python TextEE/evaluate_pipeline.py --task EAE --data [eval_data] --eae_model [saved_model_folder]
# Evaluating ED+EAE
python TextEE/evaluate_pipeline.py --task E2E --data [eval_data] --ed_model [saved_model_folder] --eae_model [saved_model_folder]
# Predicting End-to-End
python TextEE/predict_end2end.py --input_file demo_input.txt --model [saved_model_folder] --output_file demo_output.json
# Predicting ED+EAE
python TextEE/predict_pipeline.py --input_file demo_input.txt --ed_model [saved_model_folder] --eae_model [saved_model_folder] --output_file demo_output.json
@article{Huang23textee,
author = {Kuan{-}Hao Huang and
I{-}Hung Hsu and
Tanmay Parekh and
Zhiyu Xie and
Zixuan Zhang and
Premkumar Natarajan and
Kai{-}Wei Chang and
Nanyun Peng and
Heng Ji},
title = {TextEE: Benchmark, Reevaluation, Reflections, and Future Challenges in Event Extraction},
journal = {arXiv preprint arXiv:2311.09562},
year = {2023},
}