Skip to content

Ambizione

Emanuel Huber edited this page Aug 20, 2018 · 36 revisions

"Bridging the gab between hydrogeology and water supply"


Ideas

Philosophy

Develop individual "bricks" that are autonomous but can be linked/coupled together to build a big wall.

  • New open-source tool development (explain limitation current application, potential for new one)

    • R-packages
    • OpenFOAM solver & applications
  • Integrate:

    • environmental processes (climate change, water cycle, hydrogeology > coupling)
    • engineering processes (water supply network, water extraction for agriculture, industry)
    • ecology: impact pumping on sensible eco-system (sources)
    • economic aspect (infrastructure costs: life duration, dimensioning, etc., population growth; use of thermal energy)
    • politic aspect (provide politics with data/concept to take decisions)
  • Forecast

  • Risk analysis (groundwater contamination, break of the water flow network,...)

  • conflicting uses: propose strategy

  • methods developped: inverse modeling, uncertainty quantification, upscaling, risk analysis

  • "with a passion for translating science into understanding, involvement and action."

  • check what research was done in "infrastructure management", cf. railway infrastructure (LITEP)

  • MDPI - Advances in Water Distribution Networks (Deadline: 24 April 2018) Guest Editors: Giuseppe Pezzinga and Enrico Creaco

Check

Challenges

  • Hochwasserschutz: Siedlungen und Infrastrukturen Hochwasserschutzprojekt im oberen Emmental -> Grundwasserabsenkung: "Die Interessenabwägung zwischen der Gefahr eines 300-jährigen Hochwassers und der Versorgungssicherheit von 32'000 Einwohnern mit Trinkwasser ist nicht einfach und muss sehr sorgfältig vorgenommen werden" (Geschäftsbericht Emmental Trinkwasser 2017).
  • Geschiebehaushalt im Gleichgewicht: Sohlenabtrag führt zu GW-Absenkung, unterspüllung Schutzbauten, Änderung der ufernahe Vegetation.
    • D.h., Sicherung der Grundwasserreserven
  • Entwicklungsmöglichkeiten für das Gewässersystem: natürliches Flusssystem verfügt über Raum und ist in ständigem Wandel
    • Erhaltung und Aufwertung des ökologischen Potentials (Revitalisierung)
  • Erhaltung und Aufwertung von attraktiven Naherholungsräumen

-> dem Fluss mehr Raum geben (Quelle: Thomas Ammon (2013) Integrale Wasserwirtschaft)

Rund zehn ufernahe Grundwasserfassungen säumen die Aare zwischen Thun und Bern. Insgesamt beträgt die konzedierte Entnahmeleistung rund 150'000 Liter pro Minute. Die Fassungen verfügen alle über rechtskräftige Grundwasserschutzzonen. Die wichtigsten Vorteile dieser Fassungen sind höhere verfügbare Fördermengen dank induzierter Infiltration von Flusswasser sowie eine deutliche verringerte Mineralisation und Nitratbelastung im Vergleich zu Grundwasser, welches fernab von Fliessgewässern gefördert wird. (Quelle: Thomas Ammon (2013) Integrale Wasserwirtschaft)

Water Governance: frameworks and negotiations

Identify and analyse the new challenges of water resource management at the global scale, considering the whole water cycle Analyse hydrodiplomacy and actors’ strategies and understand trends and functioning of water governance at the global level. Provide tools to water professionals for the analysis of water policy issues and the management of the resource in the face of risk and uncertainty Develop work-related skills such as: ability to analyse international legal and institutional frameworks, and the related negotiations; ability to prevent and regulate water conflicts Develop a community of practice in the field of water governance CAS - Water Governance: frameworks and negotiations

Requirement

  • groundwater flow and transport simulator with highly uncertain boundary conditions (input/output)
    • either openFOAM grounwater flow transport: with zeroGradient boundary conditions
    • or boundary conditions quantification based on forecast...
  • network modeling

Risk quantification

Water safety = "Water supply that protects water availability and human health with a high degree of practical certainty" (TECHNEAU, 2009_Hokstad-et-al_methods-for-risk-analysis-drinking-water-systems.pdf)

Methods for risk analysis of drinking water systems from source to tap

  • System description/simulation
  • Identification of hazardous events
  • Quantification of risk
    • Hazard Level
    • mapping of the intrinsic groundwater vulnerability
    • Risk Intensity map
    • check
      • Goldscheider, N., Klute, M., Sturm, S. and Hötzl, H., The PI method - a GIS-based approach to mapping groundwater vulnerability with special consideration of karst aquifers, Z. angew. Geol. 46, 3 (2000) 157-166.
      • Nguyet, V. and Goldscheider, N., A simplified methodology for mapping groundwater vulnerability and contamination risk, and its first application in a tropical karst area, Vietnam, Hydrogeology Journal, Vietnam. 14 (2006) 1666-1675.
      • Sturm S., Kiefer J. and Ball T. Risk assessment case study – Freiburg-Ebnet, Germany, Report no. D 4.1.5d, TECHNEAU, 2008.
  • risk analysis methods

Zentrales Ziel der Wasserversorgung ist die Garantierung der qualitativen und quantitativen Versorgungssicherheit. Die bisherigen Methoden zur Beurteilung der Versorgungssicherheit (Normal- und Maximallastfall) mögen für eine einzelne Wasserversorgung genügen, für ein grosses und komplexes System sind sie aber zu ungenau und basieren auf subjektiven Annahmen. Es wird deshalb eine Beurteilung der Versorgungssicherheit verlangt, welche die Systemeigenschaften und die Ausfallrisiken objektiv berücksichtigt und so als Basis für die zukünftigen System- und Investitionsentscheide dienen kann. 2012_oxand_risikobasierte-analyse-wasserversorgungsicherhiet.pdf

Approach overview

source: TECHNEAU, 2009_Hokstad-et-al_methods-for-risk-analysis-drinking-water-systems.pdf

  • Markov chain
  • Bayesian networks
  • Event Tree Analysis (ETA)
  • Methods for risk analysis of water quantity: Here a hydraulic network simulation model, i.e. EPANET, is combined with a routine forecasting the probability of failure for each pipe. WP2_Description_and_Validation_of_Technical_Tools_.pdf

Markov chain

States:

  • State 0: Both components (pumps) are working
  • State 1: One component (pump) has failed and the other is working, (but system is still working)
  • State 2: Both components have failed, (and so system has failed).

Transitions between the states here occur according to the following constant rates:

  • λ = Failure rate of a component (that is operating); (failures per unit time)
  • μ1 = Repair rate when one component has failed; (repairs per unit time)
  • μ2 = Repair rate when both components have failed; (repairs per unit time)

Rausand and Høyland [23] provide a good introduction to the use of Markov analyses in reliability and risk analyses. There is also an IEC standard for the method which could be helpful for a concise description [81]. TECHNEAU, 2009_Hokstad-et-al_methods-for-risk-analysis-drinking-water-systems.pdf [23] = Rausand, M., Høyland, A., System reliability theory. Models, statistical methods, and applications, Wiley-Interscience, New Jersey, U.S.A., 2004. [81] = IEC 61165. Application of Markov techniques, 2006.

Optimisation

Do not include financial aspect in the optimisation. At the end of the opitmisation, sort the alternative acoording to their cost and remove alternative that are more expensive and worse than other ones.

Groundwater protection zone

Account for:

  • use conflicts
  • max necessary groundwater withdrawal (defines max extent protection zone)
  • financial compensation (is really uncertain and case dependent)

Water quality measurement frequency

At which frequency and where to measure to detect early enough a contamination?

Water distribution net optimisation

how much redundancy is necessary to focus on the main ressources and ensure a safe supply?

  1. theoretical optimisation
  2. compare results with what is really possible (accouting for physical constraint)
  3. I don't know...

Water Supply and Cropping Area for Irrigation

See project in Neuenburg

Game theory?

Agent-based model?

Risk Analyse

  • distinguish between risk probability and impact.
    • Micro-pollution: high probability (discharge waste water treatment plant) but low impact
    • Freon contamination: very low probability but large impact

Groundwater model development

  • account for unknown lower boundary to quantify available resources

Weather/climate

Chapter 2 indicates that global and general findings of ubiquitous warming are in general agreement with temperature extremes in a specific, long-term, high-quality observation record. However, it also shows the strong natural variability at a single station and that extremes in a single year may differ significantly from the dominating tendency. Hence, one has to be careful with the interpretation of warming. Rather than re-iterating the global warming statement with every exceptional warm spell and questioning it with every exceptional cold spell (e.g. January 2010), one needs to take a more balanced view with consideration of long-term records and natural variability.

Communicating uncertainty

Example: time-series forecast, correlated, different modes, complex uncertainty

Praxis

Orvin

Pour information, la nappe phréatique de notre village arrive à un stade critique à -8.0. À l'heure actuelle, son niveau se situe à -7.3. Dès lors, nous nous permettons de faire appel à votre service afin d'avoir une solution à notre problème qui nous osons espérer a d'ores et déjà été simulé. En quelques mots, voici la théma-tique : si la terre gèle avant que les précipitations n'arrivent, l'eau ne pourra plus s'infiltrer et la nappe phréatique risque de ne pas pouvoir se remplir. Dès lors, notre village pourrait être en pénurie d'eau. Lettre de la commune municipale Orvin à OCIC, 14 novembre 2017

AgriAdapt – Agricultural adaptation to climate change and its impacts on

groundwater resources

https://meetingorganizer.copernicus.org/EGU2018/EGU2018-13854.pdf

  • What is the impact of climate change on future water demand for irrigation and on groundwater resources?
  • What are the combined impacts of climate change and irrigation on groundwater resources? How large is the risk of maladaptation through intensive irrigation?
  • Which alternative adaptation strategies could reduce the risk of maladaptation on the long term (e.g. changes in crop mixtures, changes in cultivation zones)?