Visualizing lidar data using Uber Autonomous Visualization System (AVS) and a Jupyter Notebook Application
This project contains two different applications for visualizing lidar data using KITTI Vision Benchmark Suite datasets.
You need Node.js and yarn to run the examples.
# Clone XVIZ
$ git clone https://github.com/uber/xviz.git
$ cd xviz
# Install dependencies
$ yarn bootstrap
Convert and serve KITTI example data:
# Download KITTI data
$ ./scripts/download-kitti-data.sh
# Convert KITTI data if necessary and run the XVIZ Server and Client
$ ./scripts/run-kitti-example.sh
Apart from the common dependencies like numpy
and matplotlib
notebook requires pykitti
. You can install pykitti
via pip using:
pip install pykitti
File | Description |
---|---|
kitti-dataset.ipynb |
Jupyter Notebook with dataset visualisation routines and output. |
parseTrackletXML.py |
Methods for parsing tracklets (e.g. dataset labels), originally created by Christian Herdtweck. |
utilities.py |
Convenient logging routines. |
I have used one of the raw datasets available on KITTI website.
2011_09_26_drive_0005 (0.6 GB)
Length: 160 frames (00:16 minutes)
Image resolution: 1392 x 512 pixels
Labels: 9 Cars, 3 Vans, 0 Trucks, 2 Pedestrians, 0 Sitters, 1 Cyclists, 0 Trams, 0 Misc
- Uber Xviz A protocol for real-time transfer and visualization of autonomy data - https://github.com/uber/xviz
- Alex Staravoitau Visualizing lidar data --- https://navoshta.com/kitti-lidar/