Skip to content

PyTorch implementation for "Probabilistic Circuits for Variational Inference in Discrete Graphical Models", NeurIPS 2020

Notifications You must be signed in to change notification settings

ermongroup/SPN_Variational_Inference

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

4 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

This repository contains code for the paper:

Probabilistic Circuits for Variational Inference in Discrete Graphical Models

"Probabilistic Circuits for Variational Inference in Discrete Graphical Models"
Andy Shih, Stefano Ermon
In Proceedings of the 34th Conference on Neural Information Processing Systems (NeurIPS), 2020

@inproceedings{ShihEneurips20,
  author    = {Andy Shih and Stefano Ermon},
  title     = {Probabilistic Circuits for Variational Inference in Discrete Graphical Models},
  booktitle = {Advances in Neural Information Processing Systems 33 (NeurIPS)},
  month     = {december},
  year      = {2020},
}

Here are commands for running the experiments:

Ising Models

python runising.py --loadgm=1000 --run=123 --mode=2 --n=4
python runising.py --loadgm=1000 --run=123 --mode=1 --n=8
python runising.py --loadgm=1000 --run=123 --mode=1 --n=16
python runising.py --loadgm=1000 --run=123 --mode=1 --n=32

, and repeat with loadgm=[1001,1002,1003].

UAI Inference Competition

python runuai.py --run=123

Contact

For questions, contact us at:

andyshih at cs dot stanford dot edu

About

PyTorch implementation for "Probabilistic Circuits for Variational Inference in Discrete Graphical Models", NeurIPS 2020

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages