Skip to content

Get the power of polars with the syntax of the tidyverse

License

Unknown, MIT licenses found

Licenses found

Unknown
LICENSE
MIT
LICENSE.md
Notifications You must be signed in to change notification settings

etiennebacher/tidypolars

Repository files navigation

tidypolars

check tidypolars status badge Codecov test coverage


ℹ️ This is the R package “tidypolars”. The Python one is here: markfairbanks/tidypolars


Overview

tidypolars provides a polars backend for the tidyverse. The aim of tidypolars is to enable users to keep their existing tidyverse code while using polars in the background to benefit from large performance gains. The only thing that needs to change is the way data is imported in the R session.

See the “Getting started” vignette for a gentle introduction to tidypolars.

Since most of the work is rewriting tidyverse code into polars syntax, tidypolars and polars have very similar performance.

Click to see a small benchmark

The main purpose of this benchmark is to show that polars and tidypolars are close and to give an idea of the performance. For more thorough, representative benchmarks about polars, take a look at DuckDB benchmarks instead.

library(collapse, warn.conflicts = FALSE)
#> collapse 2.0.16, see ?`collapse-package` or ?`collapse-documentation`
library(dplyr, warn.conflicts = FALSE)
library(dtplyr)
library(polars)
library(tidypolars)

large_iris <- data.table::rbindlist(rep(list(iris), 100000))
large_iris_pl <- as_polars_lf(large_iris)
large_iris_dt <- lazy_dt(large_iris)

format(nrow(large_iris), big.mark = ",")
#> [1] "15,000,000"

bench::mark(
  polars = {
    large_iris_pl$
      select(c("Sepal.Length", "Sepal.Width", "Petal.Length", "Petal.Width"))$
      with_columns(
        pl$when(
          (pl$col("Petal.Length") / pl$col("Petal.Width") > 3)
        )$then(pl$lit("long"))$
          otherwise(pl$lit("large"))$
          alias("petal_type")
      )$
      filter(pl$col("Sepal.Length")$is_between(4.5, 5.5))$
      collect()
  },
  tidypolars = {
    large_iris_pl |>
      select(starts_with(c("Sep", "Pet"))) |>
      mutate(
        petal_type = ifelse((Petal.Length / Petal.Width) > 3, "long", "large")
      ) |> 
      filter(between(Sepal.Length, 4.5, 5.5)) |> 
      compute()
  },
  dplyr = {
    large_iris |>
      select(starts_with(c("Sep", "Pet"))) |>
      mutate(
        petal_type = ifelse((Petal.Length / Petal.Width) > 3, "long", "large")
      ) |>
      filter(between(Sepal.Length, 4.5, 5.5))
  },
  dtplyr = {
    large_iris_dt |>
      select(starts_with(c("Sep", "Pet"))) |>
      mutate(
        petal_type = ifelse((Petal.Length / Petal.Width) > 3, "long", "large")
      ) |>
      filter(between(Sepal.Length, 4.5, 5.5)) |> 
      as.data.frame()
  },
  collapse = {
    large_iris |>
      fselect(c("Sepal.Length", "Sepal.Width", "Petal.Length", "Petal.Width")) |>
      fmutate(
        petal_type = data.table::fifelse((Petal.Length / Petal.Width) > 3, "long", "large")
      ) |>
      fsubset(Sepal.Length >= 4.5 & Sepal.Length <= 5.5)
  },
  check = FALSE,
  iterations = 40
)
#> Warning: Some expressions had a GC in every iteration;
#> so filtering is disabled.
#> # A tibble: 5 × 6
#>   expression      min   median `itr/sec` mem_alloc
#>   <bch:expr> <bch:tm> <bch:tm>     <dbl> <bch:byt>
#> 1 polars     260.22ms 317.05ms     3.03     19.2KB
#> 2 tidypolars 305.11ms 362.84ms     2.21   157.66KB
#> 3 dplyr         2.85s    3.19s     0.290    1.79GB
#> 4 dtplyr        1.36s    2.53s     0.416    1.72GB
#> 5 collapse   662.73ms 825.88ms     1.21   745.96MB
#> # ℹ 1 more variable: `gc/sec` <dbl>

# NOTE: do NOT take the "mem_alloc" results into account.
# `bench::mark()` doesn't report the accurate memory usage for packages calling
# Rust code.

Installation

tidypolars is built on polars, which is not available on CRAN. This means that tidypolars also can’t be on CRAN. However, you can install it from R-universe.

Sys.setenv(NOT_CRAN = "true")
install.packages("tidypolars", repos = c("https://community.r-multiverse.org", 'https://cloud.r-project.org'))

Contributing

Did you find some bugs or some errors in the documentation? Do you want tidypolars to support more functions?

Take a look at the contributing guide for instructions on bug report and pull requests.

Acknowledgements

The website theme was heavily inspired by Matthew Kay’s ggblend package: https://mjskay.github.io/ggblend/.

The package hex logo was created by Hubert Hałun as part of the Appsilon Hex Contest.