Simulation of rooted phylogenetic trees under a given Multitype Birth–Death (MTBD) model, with or without partner notification (PN).
Anna Zhukova, Olivier Gascuel. Accounting for partner notification in epidemiological birth-death-models. medRxiv 2024.09.09.24313296; doi:10.1101/2024.09.09.24313296
The MTBD models were introduced by Stadler & Bonhoeffer [Philos. Trans. R. Soc. B 2013].
An MTBD model with m states has
m(m-1) state transition rate parameters:
- μij -- transition rate from state i to state j (1 ≤ i, j ≤ m; i ≠ j), where μij ≥ 0
m2 transmission rate parameters:
- λij -- transmission rate from state i (donor) to state j (recipient) (1 ≤ i, j ≤ m), where λij ≥ 0
m removal (becoming non-infectious) rate parameters:
- ψi -- removal rate of state i (1 ≤ i ≤ m), where ψi ≥ 0
m sampling probability upon removal parameters:
- pi -- probability to sample the pathogen of an individual in state i upon removal (1 ≤ i ≤ m), where 0 < pi ≤ 1
Partner notification adds two parameters to the initial MTBD model:
- υ -- probability to notify partners upon sampling
- φ -- notified partner removal and sampling rate: φ >> ψi ∀i (1 ≤ i ≤ m). The pathogen of a notified partner is sampled automatically (with a probability of 1) upon removal.
We pay particular interest to the classical BD model, the BD Exposed-Infectious (BDEI) model, and BD with superspreading (BDSS), as they are described in [Voznica et al. 2021], and to their -PN versions [Zhukova et al. 2024].
3 parameters:
- λ -- transmission rate
- ψ -- removal rate
- p -- sampling probability upon removal
Epidemiological parameters:
- R0=λ/ψ -- reproduction number
- 1/ψ -- infectious time
5 parameters:
- λ -- transmission rate
- ψ -- removal rate
- p -- sampling probability upon removal
- υ -- probability to notify partners upon sampling
- φ -- notified partner removal and sampling rate: φ >> ψ
Epidemiological parameters:
- R0=λ/ψ -- reproduction number
- 1/ψ -- infectious time
- 1/φ -- notified partner removal time
2 states:
- E, exposed, i.e. infected but not yet infectious
- I, infectious
4 parameters:
- μ -- transition rate from E to I (becoming infectious)
- λ -- transmission rate from I to E
- ψ -- removal rate of I
- p -- sampling probability upon removal
Epidemiological parameters:
- R0=λ/ψ -- reproduction number
- 1/ψ -- infectious time
- 1/μ -- incubation period
2 states:
- E, exposed, i.e. infected but not yet infectious
- I, infectious
6 parameters:
- μ -- transition rate from E to I (becoming infectious)
- λ -- transmission rate from I to E
- ψ -- removal rate of I
- p -- sampling probability upon removal
- υ -- probability to notify partners upon sampling
- φ -- notified partner removal and sampling rate: φ >> ψ
Epidemiological parameters:
- R0=λ/ψ -- reproduction number
- 1/ψ -- infectious time
- 1/μ -- incubation period
- 1/φ -- notified partner removal time
2 compartments:
- N, standard infectious individual
- S, superspreader
6 parameters:
-
λnn -- transmission rate from N to N
-
λns -- transmission rate from N to S
-
λsn -- transmission rate from S to N
-
λss -- transmission rate from S to S
(with a constraint that λss/λns=λsn/λnn)
-
ψ -- removal rate of S and of N (the same)
-
p -- sampling probability upon removal (the same for N and S)
Epidemiological parameters:
- R0=(λnn + λss)/ψ -- reproduction number
- 1/ψ -- infectious time
- X=λss/λns=λsn/λnn -- super-spreading transmission ratio
- f=λss/(λsn + λss) -- super-spreading fraction
2 states:
- N, standard infectious individual
- S, superspreader
8 parameters:
-
λnn -- transmission rate from N to N
-
λns -- transmission rate from N to S
-
λsn -- transmission rate from S to N
-
λss -- transmission rate from S to S
(with a constraint that λss/λns=λsn/λnn)
-
ψ -- removal rate of S and of N (the same)
-
p -- sampling probability upon removal (the same for N and S)
-
υ -- probability to notify partners upon sampling
-
φ -- notified partner removal and sampling rate: φ >> ψ
Epidemiological parameters:
- R0=(λnn + λss)/ψ -- reproduction number
- 1/ψ -- infectious time
- X=λss/λns=λsn/λnn -- super-spreading transmission ratio
- f=λss/(λsn + λss) -- super-spreading fraction
- 1/φ -- notified partner removal time
There are 4 alternative ways to run treesimulator on your computer: with docker, apptainer, in Python3, or via command line (requires installation with Python3).
You could either install python (version 3.6 or higher) system-wide and then install treesimulator via pip:
sudo apt install -y python3 python3-pip python3-setuptools python3-distutils
pip3 install treesimulator
or alternatively, you could install python (version 3.6 or higher) and treesimulator via conda (make sure that conda is installed first).
(Optional) to install treesimulator in a new conda environment (e.g., called phyloenv below), first create and activate the environment:
conda create --name phyloenv python=3.6
conda activate phyloenv
Install treesimulator with conda
conda install treesimulator
If you installed treesimulator in a conda environment (here named phyloenv), do not forget to first activate it, e.g.
conda activate phyloenv
The following command simulates a tree with 200-500 tips under the BD model, with λ=0.5, ψ=0.25, p=0.5, and saves it to the file tree.nwk, while saving the parameters to the comma-separated file params.csv:
generate_bd --min_tips 200 --max_tips 500 \
--la 0.5 --psi 0.25 --p 0.5 \
--nwk tree.nwk --log params.csv
The following command simulates a tree with 200-500 tips under the BD-PN model, with λ=0.5, ψ=0.25, p=0.5, φ=2.5, υ=0.2, and allowing to notify only the most recent partner of each sampled index case. The simulated tree is saved to the file tree.nwk, while the model parameters are saved to the comma-separated file params.csv:
generate_bd --min_tips 200 --max_tips 500 \
--la 0.5 --psi 0.25 --p 0.5 \
--phi 2.5 --upsilon 0.2 --max_notified_partners 1 \
--nwk tree.nwk --log params.csv
To see detailed options, run:
generate_bd --help
The following command simulates a tree with 200-500 tips under the BDEI model, with μ=1, λ=0.5, ψ=0.25, p=0.5, and saves it to the file tree.nwk, while saving the parameters to the comma-separated file params.csv:
generate_bdei --min_tips 200 --max_tips 500 \
--mu 1 --la 0.5 --psi 0.25 --p 0.5 \
--nwk tree.nwk --log params.csv
The following command simulates a tree with 200-500 tips under the BDEI-PN model, with μ=1, λ=0.5, ψ=0.25, p=0.5, φ=2.5, υ=0.2, and allowing to notify only the most recent partner of each sampled index case. The simulated tree is saved to the file tree.nwk, while the model parameters are saved to the comma-separated file params.csv:
generate_bdei --min_tips 200 --max_tips 500 \
--mu 1 --la 0.5 --psi 0.25 --p 0.5 \
--phi 2.5 --upsilon 0.2 --max_notified_partners 1 \
--nwk tree.nwk --log params.csv
To see detailed options, run:
generate_bdei --help
The following command simulates a tree with 200-500 tips under the BDSS model, with λnn=0.1, λns=0.3, λsn=0.5, λss=1.5, ψ=0.25, p=0.5, and saves it to the file tree.nwk, while saving the parameters to the comma-separated file params.csv:
generate_bdss --min_tips 200 --max_tips 500 \
--la_nn 0.1 --la_ns 0.3 --la_sn 0.5 --la_ss 1.5 --psi 0.25 --p 0.5 \
--nwk tree.nwk --log params.csv
The following command simulates a tree with 200-500 tips under the BDSS-PN model, with λnn=0.1, λns=0.3, λsn=0.5, λss=1.5, ψ=0.25, p=0.5, φ=2.5, υ=0.2, and allowing to notify only the most recent partner of each sampled index case. The simulated tree is saved to the file tree.nwk, while the model parameters are saved to the comma-separated file params.csv:
generate_bdss --min_tips 200 --max_tips 500 \
--la_nn 0.1 --la_ns 0.3 --la_sn 0.5 --la_ss 1.5 --psi 0.25 --p 0.5 \
--phi 2.5 --upsilon 0.2 --max_notified_partners 1 \
--nwk tree.nwk --log params.csv
To see detailed options, run:
generate_bdss --help
The following command simulates a tree with 200-500 tips under a generic MTBD model, with two states A and B, with μaa=0.5, μab=0.6, μba=0.7, μbb=0.8, λaa=0.1, λab=0.2, λba=0.3, λbb=0.4, ψa=0.05, ψb=0.08, p=a0.15, p=b0.65, and saves it to the file tree.nwk, while saving the parameters to the comma-separated file params.csv:
generate_mtbd --min_tips 200 --max_tips 500 \
--states A B \
--transition_rates 0.5 0.6 0.7 0.8 \
--transmission_rates 0.1 0.2 0.3 0.4 \
--removal_rates 0.05 0.08 \
--sampling_probabilities 0.15 0.65 \
--nwk tree.nwk --log params.csv
The following command simulates a tree with 200-500 tips under a generic MTBD model, with two states A and B, with μaa=0.5, μab=0.6, μba=0.7, μbb=0.8, λaa=0.1, λab=0.2, λba=0.3, λbb=0.4, ψa=0.05, ψb=0.08, p=a0.15, p=b0.65, φ=2.5, υ=0.2, and allowing to notify only the most recent partner of each sampled index case. The simulated tree is saved to the file tree.nwk, while the model parameters are saved to the comma-separated file params.csv:
generate_mtbd --min_tips 200 --max_tips 500 \
--states A B \
--transition_rates 0.5 0.6 0.7 0.8 \
--transmission_rates 0.1 0.2 0.3 0.4 \
--removal_rates 0.05 0.08 \
--sampling_probabilities 0.15 0.65 \
--phi 2.5 --upsilon 0.2 --max_notified_partners 1 \
--nwk tree.nwk --log params.csv
To see detailed options, run:
generate_mtbd --help
To simulate trees with 200-500 tips under the above models and settings:
from treesimulator.generator import generate
from treesimulator import save_forest
from treesimulator.mtbd_models import Model, BirthDeathModel, BirthDeathExposedInfectiousModel, \
BirthDeathWithSuperSpreadingModel, PNModel
# BD and BD-PN
bd_model = BirthDeathModel(p=0.5, la=0.5, psi=0.25)
print(bd_model.get_epidemiological_parameters())
[bd_tree], _, _ = generate(bd_model, min_tips=200, max_tips=500)
save_forest([bd_tree], 'BD_tree.nwk')
bdpn_model = PNModel(model=bd_model, upsilon=0.2, partner_removal_rate=2.5)
[bdpn_tree], _, _ = generate(bdpn_model, min_tips=200, max_tips=500)
save_forest([bdpn_tree], 'BDPN_tree.nwk')
# BDEI and BDEI-PN
bdei_model = BirthDeathExposedInfectiousModel(p=0.5, mu=1, la=0.5, psi=0.25)
print(bdei_model.get_epidemiological_parameters())
[bdei_tree], _, _ = generate(bdei_model, min_tips=200, max_tips=500)
save_forest([bdei_tree], 'BDEI_tree.nwk')
bdeipn_model = PNModel(model=bdei_model, upsilon=0.2, partner_removal_rate=2.5)
[bdeipn_tree], _, _ = generate(bdeipn_model, min_tips=200, max_tips=500)
save_forest([bdeipn_tree], 'BDEIPN_tree.nwk')
# BDSS and BDSS-PN
bdss_model = BirthDeathWithSuperSpreadingModel(p=0.5, la_nn=0.1, la_ns=0.3, la_sn=0.5, la_ss=1.5, psi=0.25)
print(bdss_model.get_epidemiological_parameters())
[bdss_tree], _, _ = generate(bdss_model, min_tips=200, max_tips=500)
save_forest([bdss_tree], 'BDSS_tree.nwk')
bdsspn_model = PNModel(model=bdss_model, upsilon=0.2, partner_removal_rate=2.5)
[bdsspn_tree], _, _ = generate(bdsspn_model, min_tips=200, max_tips=500)
save_forest([bdsspn_tree], 'BDSSPN_tree.nwk')
# MTBD and MTBD-PN
mtbd_model = Model(states=['A', 'B'], transition_rates=[[0.5, 0.6], [0.7, 0.8]],
transmission_rates=[[0.1, 0.2], [0.3, 0.4]],
removal_rates=[0.05, 0.08], ps=[0.15, 0.65])
[mtbd_tree], _, _ = generate(mtbd_model, min_tips=200, max_tips=500)
save_forest([mtbd_tree], 'MTBD_tree.nwk')
mtbdpn_model = PNModel(model=mtbd_model, upsilon=0.2, partner_removal_rate=2.5)
[mtbdpn_tree], _, _ = generate(mtbdpn_model, min_tips=200, max_tips=500)
save_forest([mtbdpn_tree], 'MTBDPN_tree.nwk')
Once apptainer is installed, run the following command:
apptainer run docker://evolbioinfo/treesimlator
This will launch a terminal session within the container, in which you can run treesimulator following the instructions for the command line ("Basic usage in a command line") above.