-
Notifications
You must be signed in to change notification settings - Fork 141
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
add blip2 loss under torchmultimodal/modules/losses (#485)
Summary: Pull Request resolved: #485 as title Differential Revision: D50148648 fbshipit-source-id: be7ba4951b32c8d6cc0363f042a5a3ae725411d3
- Loading branch information
1 parent
d23662c
commit 539b963
Showing
2 changed files
with
691 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,331 @@ | ||
# Copyright (c) Meta Platforms, Inc. and affiliates. | ||
# All rights reserved. | ||
# | ||
# This source code is licensed under the BSD-style license found in the | ||
# LICENSE file in the root directory of this source tree. | ||
|
||
from itertools import chain | ||
|
||
import pytest | ||
import torch | ||
from tests.test_utils import ( | ||
assert_expected, | ||
gpu_test, | ||
init_distributed_on_file, | ||
init_weights_with_constant, | ||
with_temp_files, | ||
) | ||
from torch import distributed as dist, multiprocessing as mp, nn, optim | ||
from torchmultimodal.models.blip2.blip2 import BLIP2, Blip2Output | ||
from torchmultimodal.models.blip2.qformer_model import QformerForCLM | ||
from torchmultimodal.modules.encoders.vision_transformer import VisionTransformer | ||
from torchmultimodal.modules.layers.patch_embedding import PatchEmbeddings | ||
from torchmultimodal.modules.layers.transformer import TransformerEncoder | ||
from torchmultimodal.modules.losses.blip2_losses import Blip2Phase1Loss | ||
|
||
|
||
@pytest.fixture | ||
def dim_q(): | ||
return 4 | ||
|
||
|
||
@pytest.fixture | ||
def dim_kv(): | ||
return 2 | ||
|
||
|
||
@pytest.fixture | ||
def dim_feedforward(): | ||
return 6 | ||
|
||
|
||
@pytest.fixture | ||
def num_hidden_layers(): | ||
return 2 | ||
|
||
|
||
@pytest.fixture | ||
def num_heads(): | ||
return 2 | ||
|
||
|
||
@pytest.fixture | ||
def vocab_size(): | ||
return 20 | ||
|
||
|
||
@pytest.fixture | ||
def vit(): | ||
embedding = PatchEmbeddings(image_size=2, patch_size=1, hidden_size=2) | ||
encoder = TransformerEncoder( | ||
n_layer=1, | ||
d_model=2, | ||
n_head=1, | ||
dim_feedforward=1, | ||
activation=nn.GELU, | ||
norm_first=True, | ||
final_layer_norm_eps=1e-5, | ||
) | ||
image_encoder = VisionTransformer( | ||
embeddings=embedding, | ||
encoder=encoder, | ||
) | ||
init_weights_with_constant(image_encoder) | ||
image_encoder.eval() | ||
return image_encoder | ||
|
||
|
||
class TestBLIP2Stage1Loss: | ||
@pytest.fixture | ||
def images(self): | ||
return torch.ones(4, 3, 2, 2) | ||
|
||
@pytest.fixture | ||
def input_ids(self): | ||
return torch.ones(4, 4).long() | ||
|
||
@pytest.fixture | ||
def all_attn_mask(self): | ||
return torch.ones([4, 4]) | ||
|
||
@pytest.fixture | ||
def global_batch_size(self): | ||
return 4 | ||
|
||
@pytest.fixture | ||
def qformer_model_for_clm( | ||
self, | ||
dim_q, | ||
dim_kv, | ||
dim_feedforward, | ||
num_hidden_layers, | ||
num_heads, | ||
vocab_size, | ||
): | ||
qformer_for_clm = QformerForCLM( | ||
dim_q=dim_q, | ||
dim_kv=dim_kv, | ||
dim_feedforward=dim_feedforward, | ||
num_heads=num_heads, | ||
attn_dropout=0.0, | ||
dropout=0.0, | ||
num_hidden_layers=num_hidden_layers, | ||
max_position_embeddings=512, | ||
vocab_size=vocab_size, | ||
) | ||
return qformer_for_clm | ||
|
||
@pytest.fixture | ||
def blip2_output(self): | ||
return Blip2Output( | ||
image_embeddings=torch.ones([4, 5, 2]), | ||
image_features=torch.ones([4, 32, 4]) * 0.5, | ||
image_qformer_output=torch.ones([4, 32, 4]) * 0.5, | ||
text_features=torch.ones([4, 4]) * 0.5, | ||
prediction_scores=torch.ones([4, 4, 20]) * 5, | ||
) | ||
|
||
@pytest.fixture | ||
def blip2(self, dim_q, dim_kv, qformer_model_for_clm, vit): | ||
blip2 = BLIP2( | ||
dim_q=dim_q, | ||
image_encoder_embedding_dim=dim_kv, | ||
qformer=qformer_model_for_clm, | ||
vision_encoder=vit, | ||
embedding_dim=4, | ||
decoder_bos_token_id=19, | ||
) | ||
init_weights_with_constant(blip2) | ||
blip2.eval() | ||
return blip2 | ||
|
||
def test_local_loss(self, all_attn_mask, blip2_output, blip2, dim_q, input_ids): | ||
blip2_loss = Blip2Phase1Loss(dim_q=dim_q) | ||
init_weights_with_constant(blip2_loss) | ||
local_loss = blip2_loss( | ||
model_output=blip2_output, | ||
blip2=blip2, | ||
input_ids=input_ids, | ||
attention_mask=all_attn_mask, | ||
) | ||
assert_expected(local_loss.total_loss.item(), 5.07517, rtol=0, atol=1e-4) | ||
|
||
def test_local_itc_only_loss( | ||
self, all_attn_mask, blip2_output, blip2, dim_q, input_ids | ||
): | ||
blip2_loss = Blip2Phase1Loss(dim_q=dim_q, enable_itm=False, enable_itg=False) | ||
init_weights_with_constant(blip2_loss) | ||
local_loss = blip2_loss( | ||
model_output=blip2_output, | ||
blip2=blip2, | ||
input_ids=input_ids, | ||
attention_mask=all_attn_mask, | ||
) | ||
assert_expected(local_loss.total_loss.item(), 1.38629, rtol=0, atol=1e-4) | ||
|
||
def test_local_itm_only_loss( | ||
self, all_attn_mask, blip2_output, blip2, dim_q, input_ids | ||
): | ||
blip2_loss = Blip2Phase1Loss(dim_q=dim_q, enable_itc=False, enable_itg=False) | ||
init_weights_with_constant(blip2_loss) | ||
local_loss = blip2_loss( | ||
model_output=blip2_output, | ||
blip2=blip2, | ||
input_ids=input_ids, | ||
attention_mask=all_attn_mask, | ||
) | ||
assert_expected(local_loss.total_loss.item(), 0.69315, rtol=0, atol=1e-4) | ||
|
||
def test_local_itg_only_loss( | ||
self, all_attn_mask, blip2_output, blip2, dim_q, input_ids | ||
): | ||
blip2_loss = Blip2Phase1Loss(dim_q=dim_q, enable_itc=False, enable_itm=False) | ||
init_weights_with_constant(blip2_loss) | ||
local_loss = blip2_loss( | ||
model_output=blip2_output, | ||
blip2=blip2, | ||
input_ids=input_ids, | ||
attention_mask=all_attn_mask, | ||
) | ||
assert_expected(local_loss.total_loss.item(), 2.9957, rtol=0, atol=1e-4) | ||
|
||
def test_invalid_loss_input(self): | ||
with pytest.raises(ValueError): | ||
Blip2Phase1Loss( | ||
dim_q=dim_q, enable_itc=False, enable_itm=False, enable_itg=False | ||
) | ||
|
||
@staticmethod | ||
def _model_worker( | ||
gpu_id: int, | ||
sync_file: str, | ||
world_size: int, | ||
global_batch_size: int, | ||
all_images: torch.Tensor, | ||
all_input_ids: torch.Tensor, | ||
all_attn_mask: torch.Tensor, | ||
blip2_output: Blip2Output, | ||
blip2: nn.Module, | ||
dim_q=dim_q, | ||
): | ||
init_distributed_on_file( | ||
world_size=world_size, gpu_id=gpu_id, sync_file=sync_file | ||
) | ||
assert global_batch_size % world_size == 0 | ||
local_batch_size = global_batch_size // world_size | ||
all_attn_mask = torch.ones([4, 4]) | ||
|
||
# Split inputs across GPUs | ||
local_images = torch.split(all_images, local_batch_size)[gpu_id].cuda(gpu_id) | ||
local_input_ids = torch.split(all_input_ids, local_batch_size)[gpu_id].cuda( | ||
gpu_id | ||
) | ||
local_attn_mask = torch.split(all_attn_mask, local_batch_size)[gpu_id].cuda( | ||
gpu_id | ||
) | ||
assert blip2_output.text_features is not None | ||
assert blip2_output.prediction_scores is not None | ||
local_blip2_output = Blip2Output( | ||
image_embeddings=torch.split( | ||
blip2_output.image_embeddings, local_batch_size | ||
)[gpu_id].cuda(gpu_id), | ||
image_features=torch.split(blip2_output.image_features, local_batch_size)[ | ||
gpu_id | ||
].cuda(gpu_id), | ||
image_qformer_output=torch.split( | ||
blip2_output.image_qformer_output, local_batch_size | ||
)[gpu_id].cuda(gpu_id), | ||
text_features=torch.split(blip2_output.text_features, local_batch_size)[ | ||
gpu_id | ||
].cuda(gpu_id), | ||
prediction_scores=torch.split( | ||
blip2_output.prediction_scores, local_batch_size | ||
)[gpu_id].cuda(gpu_id), | ||
) | ||
|
||
blip2 = blip2.cuda(gpu_id) | ||
loss_fn = Blip2Phase1Loss(dim_q=dim_q) | ||
init_weights_with_constant(loss_fn) | ||
loss_fn = loss_fn.cuda(gpu_id) | ||
|
||
all_params = chain(blip2.parameters(), loss_fn.parameters()) | ||
|
||
optimizer = optim.SGD(all_params, lr=1e-4) | ||
|
||
# Forward pass | ||
loss = loss_fn( | ||
model_output=local_blip2_output, | ||
blip2=blip2, | ||
images=local_images, | ||
input_ids=local_input_ids, | ||
attention_mask=local_attn_mask, | ||
).total_loss | ||
|
||
# Compute gradients | ||
optimizer.zero_grad() | ||
loss.backward() | ||
|
||
# Gather gradients from all devices | ||
def gather_grads(x: torch.Tensor) -> torch.Tensor: | ||
grads = [torch.zeros_like(x).cuda(gpu_id) for i in range(world_size)] | ||
dist.all_gather(grads, x) | ||
grad = torch.stack(grads).mean() | ||
return grad | ||
|
||
# Gather losses from all devices | ||
gathered_loss = gather_grads(torch.Tensor([loss]).cuda(gpu_id)) | ||
assert_expected(gathered_loss.item(), 5.07517, rtol=0, atol=1e-4) | ||
|
||
@gpu_test(gpu_count=1) | ||
def test_single_gpu_loss( | ||
self, | ||
global_batch_size, | ||
input_ids, | ||
blip2_output, | ||
blip2, | ||
attn_mask, | ||
dim_q, | ||
): | ||
with with_temp_files(count=1) as sync_file: | ||
world_size = 1 | ||
mp.spawn( | ||
TestBLIP2Stage1Loss._model_worker, | ||
( | ||
sync_file, | ||
world_size, | ||
global_batch_size, | ||
input_ids, | ||
attn_mask, | ||
blip2_output, | ||
blip2, | ||
dim_q, | ||
), | ||
nprocs=world_size, | ||
) | ||
|
||
@gpu_test(gpu_count=2) | ||
def test_multi_gpu_loss( | ||
self, | ||
global_batch_size, | ||
input_ids, | ||
blip2_output, | ||
blip2, | ||
attn_mask, | ||
dim_q, | ||
): | ||
with with_temp_files(count=1) as sync_file: | ||
world_size = 2 | ||
mp.spawn( | ||
TestBLIP2Stage1Loss._model_worker, | ||
( | ||
sync_file, | ||
world_size, | ||
global_batch_size, | ||
input_ids, | ||
attn_mask, | ||
blip2_output, | ||
blip2, | ||
dim_q, | ||
), | ||
nprocs=world_size, | ||
) |
Oops, something went wrong.