Skip to content

fakhrirobi/forecast_passenger_BI

Repository files navigation

📊 CREATING AIR FLIGHT PASSENGER BUSINESS INTELLIGENCE DASHBOARD

✏️ PROJECT EXPLANATION

This project used Airport passenger of San Fransisco Airport from 2005 to 2016

Click here to get the Dataset

This Project was created to aim these following objectives :

✏️ PROJECT WORKFLOW

  1. Dataset Exploration
  2. Chart Exploration
  3. Dashboard Layouting
  4. Creating Dashboard
  5. Deploy both on heroku

🔧 Package / Tech Stack Used


  • Dashboard Development :

    1. Dash
    2. Dash Bootstrap Component
    3. Dash Extention -> for lottie sticker
    4. Plotly -> creating figure
  • Deployment :

    1. Heroku

⌛ FUTURE PLANS


  • Time Series Model Development

    1. Use Deep Learning, Supervised ML,
    2. Pandas
    3. Numpy
  • API Development :

    1. Generate API Key
    2. Create DB (Using PostgreSQL) for API Key and Request
  • Deployment :

    1. Deploy on GCP / AWS
  • Other Devs :

    1. Create workflow to fetch API Data with Apache Airflow
    2. Create Package using Pip
    3. Use cookiecutter
    4. Implement Testing

💎 FINAL PRODUCT

You can access the webapp in : https://dashboardpassenger.herokuapp.com/

Snapshot of the app : 'gif gile of the display of the dashboard'

🔨 INSTALLATION


#clone the repository first 
    git clone https://github.com/fakhrirobi/forecast_passenger_BI.git
#change directory 
    cd forecast_passenger_BI
#run index.py 
    python index.py 

📗 Modelling Result

RMSE Score MAE Score MAPE Score model_name
1 2.9332e+10 120793 0.028163 RandomForestRegressor
2 3.94132e+10 160227 0.0383572 XGBRegressor
3 8.33301e+11 823894 0.195214 SVRegressor
4 1.98349e+11 364297 0.0889501 KNeighborsRegressor
5 1.51227e+11 323093 0.0806871 LinearRegression
6 3.45687e+11 484491 0.11898 PassiveAggressiveRegressor
7 4.29552e+09 52562.4 0.0160444 NeuralProphet_hidden_layer3_epoch_3_weekly_seasonality12
8 0.00879809 0.0750631 0.00494308 SARIMA_1,0,1_1,0,1,12_ts_log
9 0.000148183 0.00870418 0.0005716 SARIMA_1,0,1_1,0,1,12_ts_log_moving_avg
10 3.51627e+10 127422 0.0310854 SARIMA_1,0,1_1,0,1,12_ts_moving_avg
11 0.000148428 0.00895553 0.000589953 SARIMA_1,0,1_1,0,1,12_ts_log_ewma
12 0.00758013 0.0672904 0.977108 SARIMA_1,0,1_1,0,1,12_ts_log_ewma_diff
13 7724.52 69.9086 0.0352462 SARIMA_1,0,1_1,0,1,12_sqrt_ts
14 308.334 10.7121 0.00528588 SARIMA_1,0,1_1,0,1,12_moving_avg_sqrt

..

📧 Connect With Me


Dashboard Development :

  1. Dash Syntax is challenging, since its require callback compared to streamlit which only needs like storing as variable to update value. However dash create more stunning dashboard.

..

Connect With Me


  1. Linkedin
  2. Medium
  3. Kaggle