-
Notifications
You must be signed in to change notification settings - Fork 0
fantasyTj/MNIST_Numpy
Folders and files
Name | Name | Last commit message | Last commit date | |
---|---|---|---|---|
Repository files navigation
文件结构: final_project ==components ====__init__.py ====functions.py ====img_split.py ====layers.py ====optimizer.py ====trainer.py ==dataset ====__init__.py ====mnist.pkl ====mnist.py ==final_gui_package ====__init__.py ====final_gui.py ====final_gui.ui ====final_paintboard.py ==deepconvnet_gui.py ==deepconvnet_params.pkl ==deepconvnet.py ==train_deepconvnet 环境依赖 numpy/PIL/PyQt/pickle 使用说明 最终展示文件为 deepconvnet_gui.py ,点击运行后可根据左上角“使用指南”进行测试 最终实现的卷积深度学习网络在文件 deepconvnet.py 中,该文件调用了 components 目录下的functions.py/layers.py 对于网络的训练,专门实现了Trainer类(在components目录下的trainer文件),最后在train_deepconvnet.py中进行训练(调用deepconvnet.py/train.py/optimizer.py) 训练好的参数保存在deepconvnet.pkl中 为实现最终展示界面中多数字识别,实现了一个简单的图片分割函数,在components的img_split.py中 参考: 1.《深度学习入门》--【日】斋藤康毅 2. https://github.com/hamlinzheng/mnist -----使用愉快-----
About
Implementing a CNN from scratch using the Numpy library to complete the MNIST handwritten digit recognition task.
Resources
Stars
Watchers
Forks
Releases
No releases published
Packages 0
No packages published