Skip to content

Implementing a CNN from scratch using the Numpy library to complete the MNIST handwritten digit recognition task.

Notifications You must be signed in to change notification settings

fantasyTj/MNIST_Numpy

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

3 Commits
 
 
 
 
 
 

Repository files navigation

文件结构:
final_project
==components
====__init__.py
====functions.py
====img_split.py
====layers.py
====optimizer.py
====trainer.py
==dataset
====__init__.py
====mnist.pkl
====mnist.py
==final_gui_package
====__init__.py
====final_gui.py
====final_gui.ui
====final_paintboard.py
==deepconvnet_gui.py
==deepconvnet_params.pkl
==deepconvnet.py
==train_deepconvnet

环境依赖
numpy/PIL/PyQt/pickle

使用说明
最终展示文件为 deepconvnet_gui.py ,点击运行后可根据左上角“使用指南”进行测试
最终实现的卷积深度学习网络在文件 deepconvnet.py 中,该文件调用了 components 目录下的functions.py/layers.py
对于网络的训练,专门实现了Trainer类(在components目录下的trainer文件),最后在train_deepconvnet.py中进行训练(调用deepconvnet.py/train.py/optimizer.py)
训练好的参数保存在deepconvnet.pkl中
为实现最终展示界面中多数字识别,实现了一个简单的图片分割函数,在components的img_split.py中

参考:
1.《深度学习入门》--【日】斋藤康毅
2. https://github.com/hamlinzheng/mnist
-----使用愉快-----


About

Implementing a CNN from scratch using the Numpy library to complete the MNIST handwritten digit recognition task.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages