Skip to content

Commit

Permalink
add tests for einsumdense
Browse files Browse the repository at this point in the history
  • Loading branch information
calad0i committed Nov 15, 2024
1 parent 0a2bdfb commit eac15bc
Showing 1 changed file with 57 additions and 0 deletions.
57 changes: 57 additions & 0 deletions test/pytest/test_einsum_dense.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,57 @@
from pathlib import Path

import keras
import numpy as np
import pytest

from hls4ml.converters import convert_from_keras_model

if keras.__version__ < '3.0.0':
pytest.skip('Only keras v3 is supported for now', allow_module_level=True)

from keras.api.layers import EinsumDense, Input

test_root_path = Path(__file__).parent


@pytest.mark.parametrize('strategy', ['latency'])
@pytest.mark.parametrize('io_type', ['io_parallel'])
@pytest.mark.parametrize('backend', ['Vivado', 'Vitis'])
@pytest.mark.parametrize(
'operation',
[
# eq, inp, out
('bi,j->bij', (8,), (8, 7), None),
('bi,j->bij', (8,), (8, 7), 'i'),
('bi,j->bij', (8,), (8, 7), 'j'),
('bi,io->bo', (8,), 7, None),
('...i,oi->...o', (4, 3), (5,), None),
('...abcd,bcde->...aeb', (5, 4, 3, 2), (5, 6, 4), None),
('...abcd,bcde->...aeb', (5, 4, 3, 2), (5, 6, 4), 'aeb'),
('...abcd,bcde->...aeb', (5, 4, 3, 2), (5, 6, 4), 'ab'),
('...abcd,bcde->...aeb', (5, 4, 3, 2), (5, 6, 4), 'a'),
],
)
def test_einsum_dense(backend, io_type, strategy, operation):
eq, inp_shape, out_shape, bias_axes = operation
model = keras.Sequential(
[Input(inp_shape), EinsumDense(eq, output_shape=out_shape, bias_axes=bias_axes, name='einsum_dense')]
)

if bias_axes is not None:
layer = model.get_layer('einsum_dense')
layer.bias.assign(keras.ops.convert_to_tensor(np.random.rand(*layer.bias.shape)))

data = np.random.rand(1000, *inp_shape)
eq_name = eq.replace(',', '_').replace('->', '_') + ('' if bias_axes is None else f'_{bias_axes}')
output_dir = str(test_root_path / f'hls4mlprj_einsum_dense_{eq_name}_{backend}_{io_type}_{strategy}')
hls_config = {'Model': {'Precision': 'ap_fixed<32,8>', 'ReuseFactor': 1}, 'Strategy': strategy}
model_hls = convert_from_keras_model(
model, backend=backend, output_dir=output_dir, hls_config=hls_config, io_type=io_type
)

model_hls.compile()
r_keras = model.predict(data, verbose=0, batch_size=1000) # type: ignore
r_hls = model_hls.predict(data).reshape(r_keras.shape) # type: ignore

np.testing.assert_allclose(r_hls, r_keras, atol=1e-2, rtol=0)

0 comments on commit eac15bc

Please sign in to comment.