v6.0.5
What's Changed
- coco dataset support, automatic aws weight upload by @fcakyon in #54
- add dataset upload, add neptune dataset tracking by @fcakyon in #59
- add windows support for dataset upload by @fcakyon in #61
- make pycocotools optional by @fcakyon in #56
- remove python 3.6 in tests by @fcakyon in #57
- add missing argument in readme by @fcakyon in #60
- fix omp error in windows by @fcakyon in #62
- fix weight s3 uri for windows by @fcakyon in #63
Full Changelog: 6.0.4...6.0.5
COCO Dataset Support
- Start a training using a COCO formatted dataset:
# data.yml
train_json_path: "train.json"
train_image_dir: "train_image_dir/"
val_json_path: "val.json"
val_image_dir: "val_image_dir/"
$ yolov5 train --data data.yaml --weights yolov5s.pt
New AWS and Neptune.AI Utilities
- Automatically upload weights and datasets to AWS S3 (with Neptune.AI artifact tracking integration):
export AWS_ACCESS_KEY_ID=YOUR_KEY
export AWS_SECRET_ACCESS_KEY=YOUR_KEY
$ yolov5 train --data data.yaml --weights yolov5s.pt --s3_upload_dir YOUR_S3_FOLDER_DIRECTORY --upload_dataset
- Add
yolo_s3_data_dir
intodata.yaml
to match Neptune dataset with a present dataset in S3.
# data.yml
train_json_path: "train.json"
train_image_dir: "train_image_dir/"
val_json_path: "val.json"
val_image_dir: "val_image_dir/"
yolo_s3_data_dir: s3://bucket_name/data_dir/