Skip to content

Keras卷积神经网络Python 包,对一些常见的网络、功能进行封装

Notifications You must be signed in to change notification settings

fennuDetudou/keras_cv_utils

Repository files navigation

keras_cv_utils

功能1:对常见网络模块以Python包的形式进行封装

包含的结构

  1. GoogLeNet:inception_v1、inception_v2、inception_v3
  2. ResNet :resnet_v1、resnet_v2
  3. Squeeze-and-Excitation Networks: se_block
  4. DenseNet : dense_block
  5. SqueezeNet : fire_block
  6. MobileNet : mobile_net_v1_block、mobile_net_v2_block

使用说明

  1. 追求更高的精度,则选用1、2、3、4 网络模块
  2. 追求更快的速度,则选用5、6网络模块

使用示例

搭建神经网络模型

from keras import models
from keras import layers
# 从包中导入所需的模块
from Mobile_Net import mobile_net_v1_block,mobile_net_v2_block
from SENet import se_block
from DenseNet import dense_block
from Inception import inception_v3
from SquezzeNet import fire_block
from ResNet import Resnet_v1

inputs=layers.Input(shape=(10,10,10))

x=mobile_net_v1_block(inputs,10)
x=mobile_net_v2_block(x,10,1)
x=se_block(x,16)
x=dense_block(x,4,4)
x=inception_v3(x,4,4,4,4,4,4,4)
x=fire_block(x,3,4,4)
x=Resnet_v1(x,10)

model=models.Model(inputs=inputs,outputs=x)

最终得到的模型结构如下:

About

Keras卷积神经网络Python 包,对一些常见的网络、功能进行封装

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages