Skip to content
Niels Hintzen edited this page Sep 2, 2013 · 5 revisions

Course outline

  • How the estimation of N-at-age and F-at-age works
    • The random walk
    • The statistical properties of the model
    • What is fitted and how
    • The 'mixed-model' aspects
  • Introduction to the FLSAM & FLSAMs class
    • Updating an FLStock with FLSAM object
    • Parameter values, residuals and uncertainties
      • nopar, nlogl, vcov, params, residuals
  • Introduction to the control object
    • Setup of control object
    • Binding of parameters
    • Elements of control object and how to set these
      • fleets
      • plus.group
      • states
      • logN.vars
      • catchabilities
      • power.law.exps
      • f.vars
      • obs.vars
      • srr
      • cor.F
      • hessian, running time and executable to use
  • Introduction to the diagnostics
    • Plotting an FLSAM or FLSAMs object
    • plotting pre-defined residual diagnostics
    • Plotting other useful diagnostics
      • Observation variance
      • CI of variance estimates
      • The 'banana' / otolith plot
      • Correlation plot
    • Reporting a SAM run
  • Introduction to benchmarking
    • Leave-one-in (loi)
    • Leave-one-out (loo)
    • Retrospectives
    • AIC & Likelihood ratio tests
    • Adjusting the executable
  • Introduction to MSE
    • MonteCarlo simulation
    • The pin file
    • Simulating retrospective error / batch FLSAM
    • Predicting selection at age
  • Do's and don'ts
    • Recruitment patterns
    • Over-parameterisation
    • Correlated random walks
    • Hitting the bounds of a parameter
Clone this wiki locally