Skip to content

Energy Conversion and Management - Wind farm layout optimization based on support vector regression guided genetic algorithm with consideration of participation among landowners

License

Notifications You must be signed in to change notification settings

fnaos/WFLOP_SUGGA_Python

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

23 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Energy Conversion and Management - Wind farm layout optimization based on support vector regression guided genetic algorithm with consideration of participation among landowners

Wind farm layout optimization problem (WFLOP) SUGGA Python toolbox

Reference

[1] Xinglong Ju, Feng Liu, Li Wang, and Wei-Jen Lee. "Wind farm layout optimization based on support vector regression guided genetic algorithm with consideration of participation among landowners." Energy Conversion and Management 196 (2019): 1267-1281. DOI

If you have any questions, please email Feng Liu (fliu0@mgh.harvard.edu), or Xinglong Ju (xinglong.ju@mavs.uta.edu).

Jensen's wake model.png
Jensen's wake model

SUGGA - WFLOP Python toolbox guide

Import necessary libraries

import numpy as np
import pandas as pd
import WindFarmGenetic # wind farm layout optimization using genetic algorithms classes
from datetime import datetime
import os
from sklearn.svm import SVR
import pickle

Wind farm settings and algorithm settings

# parameters for the genetic algorithm
elite_rate = 0.2
cross_rate = 0.6
random_rate = 0.5
mutate_rate = 0.1

wt_N =  25 # number of wind turbines 15, 20, or 25
# NA_loc_array : not available location array, the index starting from 1

# L1 : wind farm, cells 121(inclusive) to 144(inclusive)
NA_loc_array = np.arange(121, 145, 1)
#
# # L2
# NA_loc_array = np.arange(61, 85, 1)
#
# # L3
# NA_loc_array = np.concatenate((np.arange(11, 144, 12), np.arange(12, 145, 12)))
#
# # L4
# NA_loc_array = np.concatenate((np.arange(6, 144, 12), np.arange(7, 145, 12)))
#
# # L5
# NA_loc_array = np.concatenate((np.arange(41, 105, 12), np.arange(42, 105, 12),
#                                np.arange(43, 105, 12),
#                                np.arange(44, 105, 12)))
#
# # L6
# NA_loc_array = np.concatenate((np.arange(1, 28, 12), np.arange(2, 28, 12),
#                                np.arange(12, 37, 12),
#                                np.arange(11, 37, 12),
#                                np.arange(109, 145, 12), np.arange(119, 145, 12),
#                                np.arange(110, 145, 12),
#                                np.arange(120, 145, 12),
#                                ))
#
# # L7
# NA_loc_array = np.arange(133, 145, 1)
#
# # L8
# NA_loc_array = np.arange(61, 73, 1)
#
# # L9
# NA_loc_array = np.arange(12, 145, 12)
#
# # L10
# NA_loc_array = np.arange(6, 145, 12)
#
# # L11
# NA_loc_array = np.concatenate((np.arange(42, 105, 12),
#                                np.arange(43, 105, 12)))
#
# # L12
# NA_loc_array = np.array((1, 2, 11, 12, 13, 24, 121, 132, 133, 134, 143, 144))

# convert numpy array to list, datatype convert
NA_loc = NA_loc_array.tolist()

# L0
# NA_loc = []


population_size = 120  # how many layouts in a population
iteration_times = 200  # how many iterations in a genetic algorithm run

n_inits = 100  # number of initial populations n_inits >= run_times
run_times = 100  # number of different initial populations



# wind farm size, cells
cols_cells = 12  # number of cells each row
rows_cells = 12  # number of cells each column
cell_width = 77.0 * 3 # unit : m

# all data will be save in data folder
data_folder = "data"
if not os.path.exists(data_folder):
    os.makedirs(data_folder)

Create a WindFarmGenetic object

# create an WindFarmGenetic object. Specify the number of rows and the number columns of the wind farm land. N is the number of wind turbines.
# NA_loc is the not available locations on the wind farm land. Landowners does not want to participate in the wind farm.
# pop_size: how many individuals in the population
# iteration: iteration times of the genetic algorithm
wfg = WindFarmGenetic.WindFarmGenetic(rows=rows_cells, cols=cols_cells, N=wt_N, NA_loc=NA_loc, pop_size=population_size,
                                      iteration=iteration_times,cell_width=cell_width, elite_rate=elite_rate,
                                             cross_rate=cross_rate, random_rate=random_rate, mutate_rate=mutate_rate)
# Specify the wind distribution
# wind distribution is discrete (number of wind speeds) by (number of wind directions)
# wfg.init_1_direction_1_N_speed_13()
# file name to store the wind power distribution SVR model
# svr_model_filename = 'svr_1s1d_N_13.svr'

# wfg.init_4_direction_1_speed_13()
# svr_model_filename = 'svr_1s4d_13.svr'

wfg.init_6_direction_1_speed_13()
# svr_model_filename = 'svr_1s6d_13.svr'

Generate initial populations

# initial population saved folder
init_pops_data_folder = "{}/init_data".format(data_folder)
if not os.path.exists(init_pops_data_folder):
    os.makedirs(init_pops_data_folder)
# generate initial populations to start with and store them
# in order to start from the same initial population for different methods
# so it is fair to compare the final results

for i in range(n_inits):
    wfg.gen_init_pop_NA()
    wfg.save_init_pop_NA("{}/init_{}.dat".format(init_pops_data_folder,i), "{}/init_{}_NA.dat".format(init_pops_data_folder,i))

Create results folder

# results folder
# adaptive_best_layouts_N60_9_20190422213718.dat : best layout for AGA of run index 9
# result_CGA_20190422213715.dat : run time and best eta for CGA method
results_data_folder = "data/results"
if not os.path.exists(results_data_folder):
    os.makedirs(results_data_folder)
# if cg,ag,sg folder does not exist, create these folders. Folders to store the running results
# cg: convertional genetic algorithm
# ag: adaptive genetic algorithm
# sg: support vector regression guided genetic algorithm
cg_result_folder = "{}/cg".format(results_data_folder)
if not os.path.exists(cg_result_folder):
    os.makedirs(cg_result_folder)

ag_result_folder = "{}/ag".format(results_data_folder)
if not os.path.exists(ag_result_folder):
    os.makedirs(ag_result_folder)

sg_result_folder = "{}/sg".format(results_data_folder)
if not os.path.exists(sg_result_folder):
    os.makedirs(sg_result_folder)
    
# resul_arr: run_times by 2 , the first column is the run time in seconds for each run and the second column is the conversion efficiency for the run
result_arr = np.zeros((run_times, 2), dtype=np.float32)

Run conventional genetic algorithm (CGA)

# CGA: Conventional genetic algorithm
for i in range(0, run_times):  # run times
    print("run times {} ...".format(i))
    # load initial population
    wfg.load_init_pop_NA("{}/init_{}.dat".format(init_pops_data_folder,i), "{}/init_{}_NA.dat".format(init_pops_data_folder,i))
    # run the conventional genetic algorithm and return run time and conversion efficiency
    run_time, eta = wfg.conventional_genetic_alg(i,result_folder=cg_result_folder)
    result_arr[i, 0] = run_time
    result_arr[i, 1] = eta
time_stamp = datetime.now().strftime("%Y%m%d%H%M%S")
# save the run time and etas to a file
filename = "{}/result_conventional_{}.dat".format(cg_result_folder,time_stamp)
np.savetxt(filename, result_arr, fmt='%f', delimiter="  ")

Run adaptive genetic algorithm (AGA)

# AGA: adaptive genetic algorithm
for i in range(0,run_times):  # run times
    print("run times {} ...".format(i))
    wfg.load_init_pop_NA("{}/init_{}.dat".format(init_pops_data_folder,i),"{}/init_{}_NA.dat".format(init_pops_data_folder,i))
    run_time, eta = wfg.adaptive_genetic_alg(i,result_folder=ag_result_folder)
    result_arr[i, 0] = run_time
    result_arr[i, 1] = eta
time_stamp = datetime.now().strftime("%Y%m%d%H%M%S")
filename = "{}/result_adaptive_{}.dat".format(ag_result_folder,time_stamp)
np.savetxt(filename, result_arr, fmt='%f', delimiter="  ")

Run support vector regression guided genetic algorithm (SUGGA)

Generate wind distribution surface

n_mc_samples = 10000  # svr train data, number of layouts to average

wds_data_folder = "{}/wds".format(data_folder)
if not os.path.exists(wds_data_folder):
    os.makedirs(wds_data_folder)
# mc : monte-carlo

# number of layouts to generate as the training data for regression
# to build the power distribution surface

# mc_layout.dat file stores layouts only with 0s and 1s. 0 means no turbine here. 1 means one turbine here.
# mc_layout_NA.dat file stores layouts with 0s, 1s and 2s. 2 means no turbine and not available for turbine.
# These two files are used to generate wind power distribution.
# Each file has 10000 lines. Each line is layout.
# gen_mc_grid_with_NA_loc function generates these two files.
train_mc_layouts, train_mc_layouts_NA = WindFarmGenetic.LayoutGridMCGenerator.gen_mc_grid_with_NA_loc(rows_cells,
                                                                                                      cols_cells,
                                                                                                      n_mc_samples,
                                                                                                      wt_N, NA_loc,
                                                                                                      "{}/mc_layout.dat".format(wds_data_folder),
                                                                                                      "{}/mc_layout_NA.dat".format(wds_data_folder))


# wfg.init_1_direction_1_N_speed_13()
# file name to store the wind power distribution SVR model
# svr_model_filename = 'svr_1s1d_N_13.svr'

# wfg.init_4_direction_1_speed_13()
# svr_model_filename = 'svr_1s4d_13.svr'

# wfg.init_6_direction_1_speed_13()
svr_model_filename = 'svr_1s6d_13.svr'


# load Monte-Carlo layouts from a text file. 10000 random layouts
layouts = np.genfromtxt("{}/mc_layout.dat".format(wds_data_folder), delimiter="  ", dtype=np.int32)
# generate the location index coordinate and average power output at each location index coordinate
# location index coordinate : in the cells, the cell with index 1 has location index (0,0) and the cell 2 has (1,0)
# store the location index coordinate in x.dat and average power in y.dat
wfg.mc_gen_xy_NA(rows=rows_cells, cols=cols_cells, layouts=layouts, n=n_mc_samples, N=wt_N, xfname="{}/x.dat".format(wds_data_folder),
                 yfname="{}/y.dat".format(wds_data_folder))


# read index location coordinates
x_original = pd.read_csv("{}/x.dat".format(wds_data_folder), header=None, nrows=rows_cells * cols_cells, delim_whitespace=True, dtype=np.float32)
x_original = x_original.values

# read the power output of each index location coordinate
y_original = pd.read_csv("{}/y.dat".format(wds_data_folder), header=None, nrows=rows_cells * cols_cells, delim_whitespace=True, dtype=np.float32)
y_original = y_original.values.flatten()

# create a SVR object and specify the kernal and other parameters
svr_model = SVR(kernel='rbf', C=2000.0, gamma=0.3, epsilon=.1)
# build the SVR power distribution model
svr_model.fit(x_original, y_original)

# save the SVR model to a file
pickle.dump(svr_model, open("{}/{}".format(wds_data_folder,svr_model_filename), 'wb'))

# This is how to load SVR model from a file
# svr_model = pickle.load(open("{}/{}".format(wds_data_folder,svr_model_filename), 'rb'))

Run SUGGA method

#SUGGA: support vector regression guided genetic algorithm
for i in range(0, run_times):  # run times
    print("run times {} ...".format(i))
    wfg.load_init_pop_NA("{}/init_{}.dat".format(init_pops_data_folder,i),"{}/init_{}_NA.dat".format(init_pops_data_folder,i))
    run_time, eta = wfg.sugga_genetic_alg(i,svr_model=svr_model,result_folder=sg_result_folder)
    result_arr[i, 0] = run_time
    result_arr[i, 1] = eta
time_stamp = datetime.now().strftime("%Y%m%d%H%M%S")
filename = "{}/result_sugga_{}.dat".format(sg_result_folder,time_stamp)
np.savetxt(filename, result_arr, fmt='%f', delimiter="  ")

About

Energy Conversion and Management - Wind farm layout optimization based on support vector regression guided genetic algorithm with consideration of participation among landowners

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%