Throw JavaScript objects at the index and they will become retrievable by their properties using promises and map-reduce (see examples)
This lib will work in node and also in the browser
import fii from 'fergies-inverted-index'
const db = fii()
db.PUT([ /* my array of objects to be searched */ ]).then(doStuff)
// (given objects that contain: { land: <land>, colour: <colour>, population: <number> ... })
// get all object IDs where land=SCOTLAND and colour=GREEN
db.AND(|'land:SCOTLAND', 'colour:GREEN']).then(result)
// the query strings above can alternatively be expressed using JSON objects
db.AND([
{
FIELD: 'land'
VALUE: 'SCOTLAND'
}, {
FIELD: 'colour',
VALUE: 'GREEN'
}
]).then(result)
// as above, but return whole objects
db.AND(['land:SCOTLAND', 'colour:GREEN']).then(db.OBJECT).then(result)
// Get all object IDs where land=SCOTLAND, and those where land=IRELAND
db.OR(['land:SCOTLAND', 'land:IRELAND']).then(result)
// queries can be embedded within each other
db.AND([
'land:SCOTLAND',
db.OR(['colour:GREEN', 'colour:BLUE'])
]).then(result)
// get all object IDs where land=SCOTLAND and colour is NOT GREEN
db.NOT(
db.GET('land:SCOTLAND'), // everything in this set
db.GET('colour:GREEN', 'colour:RED'). // minus everything in this set
).then(result)
// Get max population
db.MAX('population').then(result)
(See the tests for more examples.)
fii()
db.AGGREGATION_FILTER()
db.AND()
db.BUCKETS()
db.CREATED()
db.DELETE()
db.DISTINCT()
db.EXIST()
db.EXPORT()
db.FACET()
db.FIELDS()
db.GET()
db.IMPORT()
db.LAST_UPDATED()
db.MAX()
db.MIN()
db.NOT()
db.OBJECT()
db.OR()
db.PUT()
db.SORT()
db.STORE
db.TIMESTAMP_LAST_UPDATED
Returns a promise
import fii from 'fergies-inverted-index'
// creates a DB called "myDB" using levelDB (node.js), or indexedDB (browser)
const db = await fii({ name: 'myDB' })
In some cases you will want to start operating on the database instentaneously. In these cases you can wait for the callback:
import fii from 'fergies-inverted-index'
// creates a DB called "myDB" using levelDB (node.js), or indexedDB (browser)
fii({ name: 'myDB' }, (err, db) => {
// db is guaranteed to be open and available
})
The aggregation (either FACETS or BUCKETS) is filtered by the query
Promise.all([
FACETS({
FIELD: ['drivetrain', 'model']
}),
AND(['colour:Black'])
])
.then(([facetResult, queryResult]) =>
db.AGGREGATION_FILTER(facetResult, queryResult)
)
.then(result)
db.AND
returns a set of object IDs that match every clause in the query.
For example- get the set of objects where the land
property is set
to scotland
, year
is 1975
and color
is blue
db.AND([ 'land:scotland', 'year:1975', 'color:blue' ]).then(result)
Every bucket returns all object ids for objects that contain the given token
BUCKETS(
{
FIELD: ['year'],
VALUE: {
LTE: 2010
}
},
{
FIELD: ['year'],
VALUE: {
GTE: 2010
}
}
).then(result)
Returns the timestamp that indicates when the index was created
db.CREATED().then(result)
Delete all objects by id. The result indicated if the delete operation was successful or not.
db.DELETE([ 1, 2, 3 ]).then(result)
db.DISTINCT
returns every value in the db that is greater than equal
to GTE
and less than or equal to LTE
(sorted alphabetically)
For example- get all names between h
and l
:
db.DISTINCT({ GTE: 'h', LTE: 'l' }).then(result)
Indicates whether the documents with the given ids exist in the index
db.EXIST(1, 2, 3).then(result)
Exports the index to text file. See also IMPORT.
db.EXPORT().then(result)
Creates an aggregation for each value in the given range. FACETS differs from BUCKETS in that FACETS creates an aggregation per value whereas BUCKETS can create aggregations on ranges of values
db.FACETS(
{
FIELD: 'colour'
},
{
FIELD: 'drivetrain'
}
).then(result)
db.FIELDS
returns all available fields
db.FIELDS().then(result) // 'result' is an array containing all available fields
db.GET
returns all object ids for objects that contain the given
property, aggregated by object id.
For example to get all Teslas do:
db.GET('Tesla').then(result) // get all documents that contain Tesla, somewhere in their structure
Perhaps you want to be more specific and only return documents that contain Tesla
in the make
FIELD
db.GET('make:Tesla').then(result)
which is equivalent to:
db.GET({
FIELD: 'make',
VALUE: 'Tesla'
}).then(result)
You can get all cars that begin with O
to V
in which case you could do
db.GET({
FIELD: 'make',
VALUE: {
GTE: 'O', // GTE == greater than or equal to
LTE: 'V' // LTE == less than or equal to
}
}).then(result)
Reads in an exported index and returns a status.
See also EXPORT.
db.IMPORT(exportedIndex).then(result)
Returns a timestamp indicating when the index was last updated.
db.LAST_UPDATED().then(result)
Get the highest alphabetical value in a given token
For example- see the highest price:
db.MAX('price')
Get the lowest alphabetical value in a given token
For example- see the lowest price:
db.MIN('price')
Where A and B are sets, db.NOT
Returns the ids of objects that are
present in A, but not in B.
For example:
db.NOT(
global[indexName].GET({
FIELD: 'sectorcode',
VALUE: {
GTE: 'A',
LTE: 'G'
}
}),
'sectorcode:YZ'
)
Given an array of ids, db.OBJECT
will return the corresponding
objects.
db.AND([
'board_approval_month:October',
global[indexName].OR([
'sectorcode:LR',
global[indexName].AND(['sectorcode:BC', 'sectorcode:BM'])
])
])
.then(db.OBJECT)
.then(result)
Return ids of objects that are in one or more of the query clauses
For example- get the set of objects where the land
property is set
to scotland
, or year
is 1975
or color
is blue
db.AND([ 'land:scotland', 'year:1975', 'color:blue' ]).then(result)
Add documents to index
For example:
db.PUT([
{
_id: 8,
make: 'BMW',
colour: 'Silver',
year: 2015,
price: 81177,
model: '3-series',
drivetrain: 'Petrol'
},
{
_id: 9,
make: 'Volvo',
colour: 'White',
year: 2004,
price: 3751,
model: 'XC90',
drivetrain: 'Hybrid'
}
]).then(result)
Example:
db.GET('blue').then(db.SORT)
Property that points to the underlying level store
test