Skip to content

Commit

Permalink
Update Dual.lean
Browse files Browse the repository at this point in the history
  • Loading branch information
pitmonticone committed Jul 22, 2024
1 parent f8ae938 commit 467cb1a
Showing 1 changed file with 4 additions and 5 deletions.
9 changes: 4 additions & 5 deletions BonnAnalysis/Dual.lean
Original file line number Diff line number Diff line change
Expand Up @@ -310,7 +310,7 @@ lemma q_div_p_add_one : q / p + 1 = q := by

lemma q_div_p_add_one' (hqᵢ : q ≠ ∞) : q.toReal / p.toReal + 1 = q.toReal := by
calc _ = (q / p).toReal + 1 := by rw [toReal_div]
_ = (q / p + 1).toReal := by rw [toReal_add]; simp; exact q_div_p_ne_top hqᵢ; simp
_ = (q / p + 1).toReal := by rw [toReal_add, one_toReal]; apply q_div_p_ne_top hqᵢ; simp
_ = q.toReal := by rw [q_div_p_add_one]

lemma q_div_p_add_one'' (hqᵢ : q ≠ ∞) : q.toReal / p.toReal = q.toReal - 1 := by
Expand All @@ -335,8 +335,8 @@ theorem snorm'_mul_const {p : ℝ} (hp : p > 0) (f : α → ℝ) (c : ℝ) :
pattern (_ * _) ^ _
rw [ENNReal.mul_rpow_of_ne_top]
rfl
apply coe_ne_top
apply coe_ne_top
· exact coe_ne_top
· exact coe_ne_top

rw [lintegral_mul_const']
case neg.hr => simp_all
Expand All @@ -351,8 +351,7 @@ theorem snorm'_mul_const {p : ℝ} (hp : p > 0) (f : α → ℝ) (c : ℝ) :
apply ENNReal.rpow_rpow_inv
linarith

theorem nnnorm_toReal_eq_abs (x : ℝ) : ‖x‖₊.toReal = |x| := by
rw [coe_nnnorm, norm_eq_abs]
theorem nnnorm_toReal_eq_abs (x : ℝ) : ‖x‖₊.toReal = |x| := by rw [coe_nnnorm, norm_eq_abs]

def step' : ℝ → ℝ := Set.piecewise {x | x ≤ 0} 0 1

Expand Down

0 comments on commit 467cb1a

Please sign in to comment.