Skip to content

Deep learning for directional sound source separation from Ambisonics mixtures.

License

Notifications You must be signed in to change notification settings

francesclluis/direction-ambisonics-source-separation

Repository files navigation

Direction Specific Ambisonics Source Separation with End-To-End Deep Learning

Deep learning for directional sound source separation from Ambisonics mixtures.

About

This respository contains code accompanying the paper "Direction Specific Ambisonics Source Separation with End-To-End Deep Learning".

diagram

Setup

For installation instructions, please see Install.md.

Data Generation

  1. Download the musdb18hq and the FUSS datasets.
  2. Specify the root path of each dataset in mix.py (inside prepareMUSDB() and prepareFuss() functions).
  3. Generate data by runninng: python mix.py [train/validate/test] [num_mixes] [num_mixes_with_silent_sources] [minimal_angular_dist] [save_path] [optionals]
    Example (Musdb18 train set with room): python mix.py train 10000 3000 5 /path/to/save/data --dataset musdb --render_room --room_size_range 2 2 1 --rt_range 0.2
    Example (FUSS train set with room): python mix.py train 20000 0 5 /path/to/save/data --dataset fuss --render_room --room_size_range 2 2 1 --rt_range 0.2
  4. A detailed description of all configurable arguments can be found in mix.py.

Usage

Training:

Example (Implicit mode, order 1): python train.py /path/train_dir/ /path/validate_dir/ --name o1_implicit --ambiorder 1 --ambimode implicit --checkpoints_dir ./checkpoints --batch_size 16 --use_cuda
Example (Mixed mode, order 4): python train.py /path/train_dir/ /path/validate_dir/ --name o4_mixed --ambiorder 4 --ambimode mixed --checkpoints_dir ./checkpoints --batch_size 16 --use_cuda

A detailed description of all configurable parameters can be found in train.py

Source Separation Evaluation:

Example (Implicit mode, order 2): python evaluate_music_separation.py /path/test_dir/ /checkpoint/file.pt --use_cuda --ambiorder 2 --ambimode implicit --result_dir /path/result_dir/
A detailed description of all configurable parameters can be found in evaluate_music_separation.py

Acknowlegements

We reuse code from Cone-of-Silence (https://github.com/vivjay30/Cone-of-Silence).
This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 812719.

About

Deep learning for directional sound source separation from Ambisonics mixtures.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages