Skip to content

ftyers/commonvoice-utils

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Common Voice Utils

This repository collects together basic linguistic processing data for using dataset dumps from the Common Voice project. It aims to provide a one-stop-shop for utilities and data useful in training ASR and TTS systems.

Tools

  • Phonemiser:
    • A rudimentary grapheme to phoneme (g2p) system based on either:
      • a deterministic longest-match left-to-right replacement of orthographic units; or
      • a weighted finite-state transducer
  • Validator:
    • A validation and normalisation script.
    • It checks a sentence to see if it can be converted and if possible normalises the encoding, removes punctuation and returns it
  • Alphabet:
    • The relevant alphabet of the language, appropriate for use in training ASR
  • Segmenter:
    • A deterministic sentence segmentation algorithm tuned for segmenting paragraphs from Wikipedia
  • Corpora:
    • Contains metadata for different corpora you may be interested in using with Common Voice

Installation

The easiest way is with pip:

$ pip install git+https://github.com/ftyers/commonvoice-utils.git

How to use it

Command line tool

There is also a command line tool, covo /ˈkəʊvəʊ/ which aims to expose much of the functionality through the command line. Some examples on the next lines:

Process a Wikipedia dump

Use a Wikipedia dump to get text for a language mode in the right format:

$ covo dump mtwiki-latest-pages-articles.xml.bz2 | covo segment mt | covo norm mt
x'inhi l-wikipedija
il-wikipedija hi mmexxija mill-fondazzjoni wikimedia fondazzjoni mingħajr fini ta' lukru li tospita proġetti oħra b'kontenut ħieles u multilingwi
il-malti huwa l-ilsien nazzjonali tar-repubblika ta' malta
huwa l-ilsien uffiċjali flimkien mal-ingliż kif ukoll wieħed mill-ilsna uffiċjali tal-unjoni ewropea

Query the OPUS corpus collection

Get a list of URLs for a particular language from the OPUS corpus collection:

$ covo opus mt | sort -gr
23859 documents,69.4M tokens	https://object.pouta.csc.fi/OPUS-DGT/v2019/mono/mt.txt.gz
8665 documents,25.8M tokens	https://object.pouta.csc.fi/OPUS-JRC-Acquis/v3.0/mono/mt.txt.gz
5388 documents,8.9M tokens	https://object.pouta.csc.fi/OPUS-JW300/v1b/mono/mt.txt.gz
...

Convert grapheme input to phonemes

Get the grapheme to phoneme output for some arbitrary input:

$ echo "euskal herrian euskaraz" | covo phon eu
eus̺kal erian eus̺kaɾas̻

$ echo "قايتا نىشان بەلگىلەش ئورنى ئۇيغۇرچە ۋىكىپىدىيە" | covo phon ug
qɑjtɑ nɪʃɑn bɛlɡɪlɛʃ ornɪ ujʁurtʃɛ vɪkɪpɪdɪjɛ

Export data for use in NVIDIA NeMo

Designed for use with NVIDIA's Nemo, converts to 16kHz mono-channel PCM .wav files and runs the transcripts through the validation step. In addition outputs .json files for each of the input .tsv files. The structure of the command is:

$ covo export nemo [language code] [common voice dataset directory]

For example for Sardinian, sc:

INFO:root:Find existing folder /tmp/cv-corpus-10.0-2022-07-04/sc/
INFO:root:Converting mp3 to wav for /tmp/cv-corpus-10.0-2022-07-04/sc/test.tsv.
100%|█████████████████████████████████████| 98/98 [00:00<00:00, 466.73it/s]
INFO:root:Creating manifests...
100%|█████████████████████████████████████| 98/98 [00:00<00:00, 94059.91it/s]
INFO:root:Converting mp3 to wav for /tmp/cv-corpus-10.0-2022-07-04/sc/dev.tsv.
100%|█████████████████████████████████████| 79/79 [00:00<00:00, 494.77it/s]
INFO:root:Creating manifests...
100%|█████████████████████████████████████| 79/79 [00:00<00:00, 100744.91it/s]
INFO:root:Converting mp3 to wav for /tmp/cv-corpus-10.0-2022-07-04/sc/train.tsv.
100%|█████████████████████████████████████| 200/200 [00:00<00:00, 497.96it/s]
INFO:root:Creating manifests...
100%|█████████████████████████████████████| 200/200 [00:00<00:00, 113836.45it/s]

Python module

The code can also be used as a Python module, here are some examples:

Alphabet

Returns an alphabet appropriate for end-to-end speech recognition.

>>> from cvutils import Alphabet
>>> a = Alphabet('cv')
>>> a.get_alphabet()
' -абвгдежзийклмнопрстуфхцчшщыэюяёҫӑӗӳ'

Corpora

Some miscellaneous tools for working with corpora:

>>> from cvutils import Corpora
>>> c = Corpora('kpv')
>>> c.dump_url()
'https://dumps.wikimedia.org/kvwiki/latest/kvwiki-latest-pages-articles.xml.bz2'
>>> c.target_segments()
[]
>>> c = Corpora('cv')
>>> c.target_segments()
['нуль', 'пӗрре', 'иккӗ', 'виҫҫӗ', 'тӑваттӑ', 'пиллӗк', 'улттӑ', 'ҫиччӗ', 'саккӑр', 'тӑххӑр', 'ҫапла', 'ҫук']
>>> c.dump_url()
'https://dumps.wikimedia.org/cvwiki/latest/cvwiki-latest-pages-articles.xml.bz2'

Grapheme to phoneme

For a given token, return an approximate broad phonemised version of it.

>>> from cvutils import Phonemiser
>>> p = Phonemiser('ab')
>>> p.phonemise('гӏапынхъамыз')
'ʕapənqaməz'

>>> p = Phonemiser('br')
>>> p.phonemise("implijout")
'impliʒut'

Validator

For a given input sentence/utterance, the validator returns either a validated and normalised version of the string according to the validation rules, or None if the string cannot be validated.

>>> from cvutils import Validator
>>> v = Validator('ab')
>>> v.validate('Аллаҳ хаҵеи-ԥҳәыси иеилыхны, аҭыԥҳацәа роума иалихыз?')
'аллаҳ хаҵеи-ԥҳәыси иеилыхны аҭыԥҳацәа роума иалихыз'

>>> v = Validator('br')
>>> v.validate('Ha cʼhoant hocʼh eus da gendercʼhel da implijout ar servijer-mañ ?')
"ha c'hoant hoc'h eus da genderc'hel da implijout ar servijer-mañ"

Sentence segmentation

Mostly designed for use with Wikipedia, takes a paragraph and returns a list of the sentences found within it.

>>> from cvutils import Segmenter 
>>> s = Segmenter('br')
>>> para = "Peurliesañ avat e kemm ar vogalennoù e c'hengerioù evit dont da vezañ heñvel ouzh ar vogalennoù en nominativ (d.l.e. ar stumm-meneg), da skouer e hungareg: Aour, tungsten, zink, uraniom, h.a., a vez kavet e kondon Bouryatia. A-bouez-bras evit armerzh ar vro eo al labour-douar ivez pa vez gounezet gwinizh ha legumaj dreist-holl. A-hend-all e vez gounezet arc'hant dre chaseal ha pesketa."
>>> for sent in s.segment(para):
...     print(sent)
... 
Peurliesañ avat e kemm ar vogalennoù e c'hengerioù evit dont da vezañ heñvel ouzh ar vogalennoù en nominativ (d.l.e. ar stumm-meneg), da skouer e hungareg: Aour, tungsten, zink, uraniom, h.a., a vez kavet e kondon Bouryatia.
A-bouez-bras evit armerzh ar vro eo al labour-douar ivez pa vez gounezet gwinizh ha legumaj dreist-holl.
A-hend-all e vez gounezet arc'hant dre chaseal ha pesketa.

Language support

Language Autonym Code (CV) (WP) Phon Valid Alphabet Segment
Abkhaz Аԥсуа abk ab
Albanian Shqipja sqi sq sq
Amharic አማርኛ amh am
Arabic اَلْعَرَبِيَّةُ ara ar ar
Assamese অসমীয়া asm as as
Asturian Asturianu ast ast ast
Azeri Azərbaycanca aze az az
Afrikaans Afrikaans afr af af
Bashkort Башҡортса bak ba ba
Basaa Basaa bas bas
Belarusian Беларуская мова bel be be
Bengali বাংলা ben bn bn
Breton Brezhoneg bre br br
Bulgarian Български bul bg bg
Catalan Català cat ca ca
Czech Čeština ces cs cs
Chukchi Ԓыгъоравэтԓьэн ckt
Chuvash Чӑвашла chv cv cv
Corsican Corsu co co co
Hakha Chin Hakha Lai cnh cnh
Highland Chatino ctp
Welsh Cymraeg cym cy cy
Dhivehi ދިވެހި div dv dv
Greek Ελληνικά ell el el
Dyula Dyula dyu
Danish Dansk dan da da
German Deutsch deu de de
English English eng en en
Esperanto Esperanto epo eo eo
Ewe Eʋegbe ewe ee ee
Spanish Español spa es es
Erzya Эрзянь кель myv myv myv
Estonian Eesti est et et
Basque Euskara eus eu eu
Persian فارسی pes fa fa
Finnish Suomi fin fi fi
French Français fra fr fr
Frisian Frysk fry fy-NL fy
Igbo Ásụ̀sụ́ Ìgbò ibo ig ig
Irish Gaeilge gle ga-IE ga
Galician Galego glg gl gl
Guaraní Avañeʼẽ gug gn gn
Hebrew עברית heb he he
Hindi हिन्दी hin hi hi
Haitian Creole Kreyòl ayisyen hat ht ht
Hausa Harshen Hausa hau ha ha
Upper Sorbian Hornjoserbšćina hsb hsb hsb
Hungarian Magyar nyelv hun hu hu
Armenian Հայերեն hye hy-AM hy
Interlingua Interlingua ina ia ia
Indonesian Bahasa indonesia ind id id
Icelandic Íslenska isl is is
Italian Italiano ita it it
Japanese 日本語 jpn ja ja
Georgian ქართული ენა kat ka ka
Kabyle Taqbaylit kab kab kab
Kazakh Қазақша kaz kk kk
Kikuyu Gĩgĩkũyũ kik ki ki
Kyrgyz Кыргызча kir ky ky
Kurmanji Kurdish Kurmancî kmr ku ku
Sorani Kurdish سۆرانی ckb ckb ckb
Komi-Zyrian Коми кыв kpv kv kv
Luganda Luganda lug lg lg
Lithuanian Lietuvių kalba lit lt lt
Lingala Lingála lin ln ln
Latvian Latviešu valoda lvs lv lv
Lao ພາສາລາວ lo lo
Luo Dholuo luo luo
Macedonian Македонски mkd mk mk
Malayalam മലയാളം mal ml ml
Marathi मराठी mar mr mr
Hill Mari Мары йӹлмӹ mrj mrj mrj
Meadow Mari Олык марий mhr mhr mhr
Mongolian Монгол хэл khk mn mn
Moksha Мокшень кяль mdf mdf mdf
Maltese Malti mlt mt mt
Yoloxóchitl Mixtec xty
Dutch Nederlands nld nl nl
Chewa Chichewa nya ny ny
Sierra Puebla Nahuatl azz
Nepali नेपाली ne ne ne
Norwegian Nynorsk Nynorsk nno nn-NO nn
Oriya ଓଡ଼ିଆ ori or or
Occitan Occità oc oc oc
Pashto پښتو ps ps ps
Punjabi ਪੰਜਾਬੀ pan pa-IN pa
Polish Polski pol pl pl
Portuguese Português por pt pt
Ayacucho Quechua Chanka runasimi quy
Kʼicheʼ Kʼicheʼ quc
Romansch (Sursilvan) Romontsch roh rm-sursilv rm
Romansch (Vallader) Rumantsch roh rm-vallader rm
Romanian Românește ron ro ro
Russian Русский rus ru ru
Kinyarwanda Kinyarwanda kin rw rw
Sakha Саха тыла sah sah sah
Sardinian Limba sarda srd sc sc
Santali ᱥᱟᱱᱛᱟᱲᱤ sat sat sat
Saraiki skr skr
Serbian Srpski srp sr sr
Slovak Slovenčina slk sk sk
Slovenian Slovenščina slv sl sl
Southern Ndebele isiNdebele seSewula nbl nr nr
Swazi siSwati ssw ss ss
Sotho Sesotho sot st st
Swahili Kiswahili swa sw
Swedish Svenska swe sv-SE sv
Tamil தமிழ் tam ta ta
Thai ภาษาไทย tha th th
Tigre ትግራይት tig ti tig
Tigrinya ትግርኛ ti ti ti
Turkish Türkçe tur tr tr
Turkmen Türkmençe tk tk tk
Tatar Татар теле tat tt tt
Tswana Setswana tsn tn tn
Tsonga Xitsonga tso ts ts
Highland Totonac tos
Twi Twi tw tw tw
Ukrainian Українська мова ukr uk uk
Urdu اُردُو urd ur ur
Uyghur ئۇيغۇر تىلى uig ug ug
Uzbek Oʻzbekcha uzb uz uz
Venda Tshivenḓa ven ve ve
Vietnamese Tiếng Việt vie vi vi
Votic Vaďďa tšeeli vot vot
Wolof Wolof wol wo
Xhosa isiXhosa xho xh xh
Yoruba Èdè Yorùbá yor yo
Zulu isiZulu zul zu zu
Tamazigh ⵜⴰⵎⴰⵣⵉⵖⵜ zgh zgh
Chinese (China) 中文 cmn zh-CN zh
Chinese (Hong Kong) 中文 cmn zh-HK zh
Chinese (Taiwan) 中文 cmn zh-TW zh

Frequently asked questions

Why not use [insert better system] for [insert task here] ?

There are potentially a lot of better language-specific systems for doing these tasks, but each one has a slightly different API, so if you want to support all the Common Voice languages or even a reasonable subset you have to learn and use the same number of language-specific APIs.

The idea of these utilities is to provide adequate implementations of things are are likely to be useful when working with all the languages in Common Voice. If you are working on a single language or have a specific setup or are using more data than just Common Voice, maybe this isn't for you. But if you want to just train coqui-ai/STT on Common Voice, then maybe it is :)

Why not just make the alphabet from the transcripts ?

Depending on the language in Common Voice, the transcripts can contain a lot of random punctuation, numerals, and incorrect character encodings (for example Latin ç instead of Cyrillic ҫ for Chuvash). These may look the same but will result in bigger sparsity for the model. Additionally some languages may have several encodings of the same character, such as the apostrophe. These will ideally be normalised before training.

Also, if you are working with a single language you probably have time to look through all the transcripts for the alphabetic symbols, but if you want to work with a large number of Common Voice languages at the same time it's useful to have them all in one place.

Hey aren't some of those languages not in Common Voice ?

That's right, some of the languages are either not in Common Voice (yet!) or are in Common Voice but have not been released yet. If I've been working with them I've included them anyway.

See also

  • epitran: Great grapheme to phoneme system that supports a wide range of languages.

Licence

All the code, aside from that explicitly licensed under a different licence, is licensed under the AGPL v 3.0.

Acknowledgements