Skip to content

garberadamc/project-site

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Tidy Workflow with MplusAutomation

Adam Garber

Channel Islands State Reserve, Santa Barbara


Finite Mixture, Latent Variable, & Structural Equation Modeling


About me:

My name is Adam Garber and I am a PhD student in Education at the University of California, Santa Barbara.The purpose of this website is to make SEM modeling accesible for applied researchers and students. My work focuses on finite mixture modeling in-line with my advisor Dr. Karen Nylund-Gibson's research (Latent_Variable_Group). My other interests are Autism and Special Education Research. In particular, the benifits of physical activity for children with disabilities.


Workflow focus on reproducibility:

  • The R package {MplusAutomation} is used for creating organized project workflows (Hallquist & Wiley, 2018)
  • All models are estimated in Mplus allowing for highly flexible SEM model specification (Muthén & Muthén, 1998-2017)
  • R-Projects and the {here} package allow for reproducibility across operating systems.
  • The {tidyverse}'s highly coherent functions are used whenever possible to increase accessibility for applied audiences (Wickham et al., 2019)

Why do I use MplusAutomation?

... instead of estimating SEM models with R packages?

  • Currently, most SEM packages in R such as {lavaan} have significant limitations in their capacity for flexibly specifying the full range modeling approaches available in SEM software (i.e., Mplus). This includes the ability to specify categorical latent variables (LCA/LPA/LTA), multi-level models (MLM), non-normal outcomes (GLM), and their combinations (i.e., multi-level LTA with covariates & distals).
  • Other packages, although highly flexible {OpenMX} are less accessible to applied researchers.

... instead of doing all modeling entirely in Mplus?

  • Running complex models in Mplus can be error prone due to the workflow involving a proliferation of files and reliance on other software (Excel, SPSS).
  • In practice, this results in organizational challenges and lots of copying and pasting.
  • Importantly, R provides convenient methods for conducting fully reproducible research projects.
  • In R documenting all research decisions and data presentation is straightforward from start to finish (e.g., data cleaning, transformation, re-coding, plotting, and table construction).

Lab materials: Factor Analysis (UCSB, ED 216B)

Data examples: All lab exercises utilize public-use data repositories.




Lab materials: Structural Equation Modeling (UCSB, ED 216F)



Lab materials: Applied Mixture Modeling (UCSB, ED 216G)

  • Lab 1: Tidy Enumeration with MplusAutomation - Latent Class Analysis (LCA)

__________________________________________________________


Replicating analyses using Tidy Workflow & MplusAutomation:



References

Hallquist, M. N., & Wiley, J. F. (2018). MplusAutomation: An R Package for Facilitating Large-Scale Latent Variable Analyses in Mplus. Structural equation modeling: a multidisciplinary journal, 25(4), 621-638.

Henry, K. L., & Muthén, B. (2010). Multilevel latent class analysis: An application of adolescent smoking typologies with individual and contextual predictors. Structural Equation Modeling, 17(2), 193-215.

Horst, A. (2020). Course & Workshop Materials. GitHub Repositories, https://https://allisonhorst.github.io/

Muthén, B. & Asparouhov, T. (2020). \textcolor{blue}{Latent Transition Analysis with Random Intercepts (RI-LTA)}. Under review. Version 3.

Muthén, L.K. and Muthén, B.O. (1998-2017). Mplus User’s Guide. Eighth Edition. Los Angeles, CA: Muthén & Muthén

Muthén, L. K., & Muthén, B. O. (2002). \textcolor{blue}{How to use a Monte Carlo study to decide on sample size and determine power.} Structural equation modeling, 9(4), 599-620.

R Core Team (2017). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/

Wickham et al., (2019). Welcome to the tidyverse. Journal of Open Source Software, 4(43), 1686, https://doi.org/10.21105/joss.01686


Releases

No releases published

Packages

No packages published

Languages