- Install Anaconda3
- For setting up the enviornment run :
- for instantiating with localstack:
bash scripts/create_experiment_env_linux.sh srtml-exp localstack_init
- for instantiating without localstack:
bash scripts/create_experiment_env_linux.sh srtml-exp
- Finally
conda activate srtml-exp python -c "import srtml; srtml.init()"
- for instantiating with localstack:
cleanmr
: Cleans the model repositorylsmr
: lists the model repisotoryplsmr
: specify s3 uri and dive deeper into model repository tree
One end-to-end running example of image preproc
For any command run <cmd> --help
to get inputs
-
prepoc_profile
: profile the vertices given from a config file. Config files look like :[ { "Model Name": "resnet50", "Accuracy": 75.8 }, { "Model Name": "resnet34", "Accuracy": 75.8 } ]
-
prepoc_populate
: puts the profiled models into model repository -
prepoc_configure
: configures the virtual abstract image classification model based on arrival curve config. Config looks like[ { "mu (qps)": 100.0, "cv": 0, "# requests": 2000, "Latency Constraint (ms)": 100.0, "Planner": "SimulatedAnnealing" } ]
-
prepoc_provision
: provisions the configured models to get latency, throughput information
prepoc_profile
prepoc_populate
prepoc_configure
prepoc_provision
ls image_preprocessing/two_vertex/accuracy_degradation/virtual/virtual_image_classification.xlsx
ls image_preprocessing/two_vertex/accuracy_degradation/physical/image_classification.xlsx