Caffe is a deep learning framework made with expression, speed, and modularity in mind. It is developed by Berkeley AI Research (BAIR)/The Berkeley Vision and Learning Center (BVLC) and community contributors.
This version add some loss function for particular tasks.
- Intel Caffe (Optimized for CPU and support for multi-node), in particular Xeon processors (HSW, BDW, SKX, Xeon Phi).
- OpenCL Caffe e.g. for AMD or Intel devices.
- Windows Caffe
Caffe is released under the BSD 2-Clause license. The BAIR/BVLC reference models are released for unrestricted use.
@article{jia2014caffe,
Author = {Jia, Yangqing and Shelhamer, Evan and Donahue, Jeff and Karayev, Sergey and Long, Jonathan and Girshick, Ross and Guadarrama, Sergio and Darrell, Trevor},
Journal = {arXiv preprint arXiv:1408.5093},
Title = {Caffe: Convolutional Architecture for Fast Feature Embedding},
Year = {2014}
}