Code for "Unsupervised Source Separation via Bayesian inference in the latent domain"
GT Compressed | Separated | |
---|---|---|
Drums | GT Compressed Drums | Separated Drums |
Bass | GT Compressed Bass | Separated Bass |
Mix | GT Compressed Mix | Separated Mix |
The separation is performed on a x64 compressed latent domain. The results can be upsampled via Jukebox upsamplers in order to increment perceptive quality (WIP).
Install the conda package manager from https://docs.conda.io/en/latest/miniconda.html
conda create --name lqvae-separation python=3.7.5
conda activate lqvae-separation
pip install mpi4py==3.0.3
pip install ffmpeg-python==0.2.0
pip install torch==1.7.1 torchvision==0.8.2 torchaudio==0.7.2
pip install -r requirements.txt
pip install -e .
- Enter inside
script/
folder and create the foldercheckpoints/
and the folderresults/
. - Download the checkpoints contained in this Google Drive folder and put them inside
checkpoints/
- Call the following in order to perform
bs
separations of 3 seconds starting from secondshift
of the mixture created with the sources inpath_1
andpath_2
. The sources must be WAV files sampled at 22kHz.PYTHONPATH=.. python bayesian_inference.py --shift=shift --path_1=path_1 --path_2=path_2 --bs=bs
- The default value for
bs
is64
, and can be handled by an RTX3080 with 16 GB of VRAM. Lower the value if you getCUDA: out of memory
.
- The
vqvae/vqvae.py
file of Jukebox has been modified in order to include the linearization loss of the LQ-VAE (it is computed at all levels of the hierarchical VQ-VAE but we only care of the topmost level given that we perform separation there). One can train a new LQ-VAE on custom data (heredata/train
for train anddata/test
for test) by running the following from the root of the project
PYTHONPATH=. mpiexec -n 1 python jukebox/train.py --hps=vqvae --sample_length=131072 --bs=8
--audio_files_dir=data/train/ --labels=False --train --test --aug_shift --aug_blend --name=lq_vae --test_audio_files_dir=data/test
- The trained model uses the
vqvae
hyperparameters inhparams.py
so if you want to change the levels / downsampling factors you have to modify them there. - The only constraint for training the LQ-VAE is to use an even number for the batch size, given its use of pairs in the loss.
- Given that
L_lin
enforces the sum operation on the latent domain, you can use the data of both sources together (or any other audio data). - Checkpoints are save in
logs/lq_vae
(lq_vae
is thename
parameter).
- After training the LQ-VAE, train two priors on two different classes by calling
PYTHONPATH=. mpiexec -n 1 python jukebox/train.py --hps=vqvae,small_prior,all_fp16,cpu_ema --name=pior_source
--audio_files_dir=data/source/train --test_audio_files_dir=data/source/test --labels=False --train --test --aug_shift
--aug_blend --prior --levels=3 --level=2 --weight_decay=0.01 --save_iters=1000 --min_duration=24 --sample_length=1048576
--bs=16 --n_ctx=8192 --sample=True --sample_iters=1000 --restore_vqvae=logs/lq_vae/checkpoint_lq_vae.pth.tar
- Here the data of the source is located in
data/source/train
anddata/source/test
and we assume the LQ-VAE has 3 levels (topmost level = 2). - The Transformer model is defined by the parameters of
small_prior
inhparams.py
and uses a context ofn_ctx=8192
codes. - The checkpoint path of the LQ-VAE trained in the previous step must be passed to
--restore_vqvae
- Checkpoints are save in
logs/pior_source
(pior_source
is thename
parameter).
- Before separation, the sums between all codes must be computed using the LQ-VAE. This can be done using the
codebook_precalc.py
in thescript
folder:
PYTHONPATH=.. python codebook_precalc.py --save_path=checkpoints/codebook_sum_precalc.pt
--restore_vqvae=../logs/lq_vae/checkpoint_lq_vae.pth.tar` --raw_to_tokens=64 --l_bins=2048
--sample_rate=22050 --alpha=[0.5, 0.5] --downs_t=(2, 2, 2) --commit=1.0 --emb_width=64
- Trained checkpoints can be given to
bayesian_inference.py
as following:PYTHONPATH=.. python bayesian_inference.py --shift=shift --path_1=path_1 --path_2=path_2 --bs=bs --restore_vqvae=checkpoints/checkpoint_step_60001_latent.pth.tar --restore_priors 'checkpoints/checkpoint_drums_22050_latent_78_19k.pth.tar' checkpoints/checkpoint_latest.pth.tar' --sum_codebook=checkpoints/codebook_precalc_22050_latent.pt
restore_priors
accepts two paths to the first and second prior checkpoints.
- In order to evaluate the pre-trained checkpoints, run
bayesian_test.py
after you have put the fullSlakh
drums and bass validation split insidedata/bass/validation
anddata/drums/validation
.
- training of upsamplers for increasing the quality of the separations
- better rejection sampling method (maybe use verifiers as in https://arxiv.org/abs/2110.14168)
If you find the code useful for your research, please consider citing
@article{mancusi2021unsupervised,
title={Unsupervised Source Separation via Bayesian Inference in the Latent Domain},
author={Mancusi, Michele and Postolache, Emilian and Fumero, Marco and Santilli, Andrea and Cosmo, Luca and Rodol{\`a}, Emanuele},
journal={arXiv preprint arXiv:2110.05313},
year={2021}
}
as well as the Jukebox baseline:
- Dhariwal, P., Jun, H., Payne, C., Kim, J. W., Radford, A., & Sutskever, I. (2020). Jukebox: A generative model for music. arXiv preprint arXiv:2005.00341.