-
Notifications
You must be signed in to change notification settings - Fork 42
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Efficient Walsh-Hadamard transform in JAX
PiperOrigin-RevId: 409211780
- Loading branch information
Showing
3 changed files
with
238 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,159 @@ | ||
# Copyright 2021 Google LLC | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
"""Efficient Walsh-Hadamard transform in JAX.""" | ||
|
||
import functools | ||
|
||
import jax | ||
import jax.numpy as jnp | ||
import scipy | ||
|
||
|
||
def walsh_hadamard_transform(x: jnp.ndarray, | ||
small_n: int = 2**9, | ||
medium_n: int = 2**13) -> jnp.ndarray: | ||
"""Efficient Walsh-Hadamard transform in JAX. | ||
The actual implementation is selected based on input size. The default | ||
thresholds are tuned on TPUv3. | ||
* When len(x) <= small_n, uses naive_walsh_hadamard_transform(). | ||
* When small_n < len(x) <= medium_n, uses | ||
top_down_fast_walsh_hadamard_transform(). | ||
* Otherwise, uses bottom_up_fast_walsh_hadamard_transform(). | ||
Args: | ||
x: A vector. len(x) must be a power of 2. | ||
small_n: Input size threshold. | ||
medium_n: Input size threshold. | ||
Returns: | ||
Transformed vector. | ||
""" | ||
n = len(x) | ||
if n <= small_n: | ||
return naive_walsh_hadamard_transform(x) | ||
elif n <= medium_n: | ||
return top_down_fast_walsh_hadamard_transform(x) | ||
else: | ||
return bottom_up_fast_walsh_hadamard_transform(x) | ||
|
||
|
||
def hadamard_matrix(n: int, dtype: jnp.dtype) -> jnp.ndarray: | ||
"""Generates the Hadamard matrix. | ||
Because there are JAX dtypes not supported in numpy, the equivalent function | ||
in scipy can't be used directly. | ||
Args: | ||
n: Number of rows/columns of the Hadamard matrix. Must be a power of 2. | ||
dtype: Output dtype. | ||
Returns: | ||
The Hadamard matrix of the given size and type. | ||
""" | ||
return jnp.array(scipy.linalg.hadamard(n), dtype) | ||
|
||
|
||
# Below we use the highest precision for dot products. This is necessary for | ||
# obtaining accurate results on TPUs. Benchmarks have shown negligible speed | ||
# difference between the default precision level and the highest. | ||
|
||
|
||
@jax.jit | ||
def naive_walsh_hadamard_transform(x: jnp.ndarray) -> jnp.ndarray: | ||
"""Walsh-Hadamard transform as direct matrix multiplication. | ||
Suitable for small inputs. | ||
Args: | ||
x: A vector. len(x) must be a power of 2. | ||
Returns: | ||
Transformed vector. | ||
""" | ||
return jnp.dot( | ||
hadamard_matrix(len(x), x.dtype), x, precision=jax.lax.Precision.HIGHEST) | ||
|
||
|
||
@functools.partial(jax.jit, static_argnums=1) | ||
def top_down_fast_walsh_hadamard_transform(x: jnp.ndarray, | ||
small_n: int = 512) -> jnp.ndarray: | ||
"""Fast Walsh-Hadamard transform in a top-down implementation. | ||
Suitable for medium sized inputs. | ||
Args: | ||
x: A vector. len(x) must be a power of 2. | ||
small_n: Input size threshold for falling back to | ||
naive_walsh_hadamard_transform(). | ||
Returns: | ||
Transformed vector. | ||
""" | ||
n = len(x) | ||
if n <= small_n: | ||
return naive_walsh_hadamard_transform(x) | ||
|
||
h_small = hadamard_matrix(small_n, x.dtype) | ||
|
||
def transform(x): | ||
n = len(x) | ||
assert n >= small_n | ||
if n == small_n: | ||
return jnp.dot(h_small, x, precision=jax.lax.Precision.HIGHEST) | ||
else: | ||
x_l, x_h = jnp.split(x, 2) | ||
y_l = transform(x_l) | ||
y_h = transform(x_h) | ||
return jnp.concatenate([y_l + y_h, y_l - y_h]) | ||
|
||
return transform(x) | ||
|
||
|
||
@functools.partial(jax.jit, static_argnums=1) | ||
def bottom_up_fast_walsh_hadamard_transform(x: jnp.ndarray, | ||
small_n: int = 512) -> jnp.ndarray: | ||
"""Fast Walsh-Hadamard transform in a bottom-up implementation. | ||
Suitable for large inputs. | ||
Args: | ||
x: A vector. len(x) must be a power of 2. | ||
small_n: Input size threshold for falling back to | ||
naive_walsh_hadamard_transform(). | ||
Returns: | ||
Transformed vector. | ||
""" | ||
n = len(x) | ||
if n <= small_n: | ||
return naive_walsh_hadamard_transform(x) | ||
|
||
h_small = hadamard_matrix(small_n, x.dtype) | ||
x_small = x.reshape([-1, 2, small_n]) | ||
# [n/2/small_n, 2 * small_n] | ||
y_lh = jnp.einsum( | ||
'ij,klj->kli', h_small, x_small, | ||
precision=jax.lax.Precision.HIGHEST).reshape([-1, 2 * small_n]) | ||
i = small_n | ||
while i < n: | ||
# Invariant: y_lh is [n/2/i, 2*i] | ||
y_l, y_h = jnp.split(y_lh, 2, axis=-1) | ||
# [n/2/i, 2*i] | ||
y = jnp.concatenate([y_l + y_h, y_l - y_h], axis=-1) | ||
i *= 2 | ||
if i == n: | ||
return y[0] | ||
y_lh = y.reshape([-1, 2 * i]) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,78 @@ | ||
# Copyright 2021 Google LLC | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
"""Tests for walsh_hadamard.""" | ||
|
||
from absl.testing import absltest | ||
|
||
import jax | ||
import jax.numpy as jnp | ||
import numpy.testing as npt | ||
|
||
from fedjax.aggregators import walsh_hadamard | ||
|
||
|
||
def random_input(n): | ||
return jnp.array(jax.random.normal(jax.random.PRNGKey(0), shape=[n])) | ||
|
||
|
||
class WalshHadamardTest(absltest.TestCase): | ||
|
||
def test_naive_walsh_hadamard_transform(self): | ||
with self.subTest('size 1'): | ||
x = random_input(1) | ||
y = walsh_hadamard.naive_walsh_hadamard_transform(x) | ||
self.assertEqual(x.shape, y.shape) | ||
self.assertEqual(x.dtype, y.dtype) | ||
npt.assert_array_equal(x, y) | ||
|
||
with self.subTest('size 2'): | ||
x = random_input(2) | ||
y = walsh_hadamard.naive_walsh_hadamard_transform(x) | ||
self.assertEqual(x.shape, y.shape) | ||
self.assertEqual(x.dtype, y.dtype) | ||
npt.assert_array_equal([x[0] + x[1], x[0] - x[1]], y) | ||
|
||
def test_fast_walsh_hadamard_transform(self): | ||
# Use a smaller than default small_n so that we don't run out of memory | ||
# when testing on GPU. | ||
small_n = 2**5 | ||
for m in [0, 4, 5, 6, 7]: | ||
x = random_input(2**m) | ||
y_naive = walsh_hadamard.naive_walsh_hadamard_transform(x) | ||
with self.subTest(f'top_down, size {2**m}'): | ||
y = walsh_hadamard.top_down_fast_walsh_hadamard_transform(x, small_n) | ||
self.assertEqual(x.shape, y.shape) | ||
self.assertEqual(x.dtype, y.dtype) | ||
npt.assert_allclose(y_naive, y, rtol=1e-2) | ||
with self.subTest(f'bottom_up, size {2**m}'): | ||
y = walsh_hadamard.bottom_up_fast_walsh_hadamard_transform(x, small_n) | ||
self.assertEqual(x.shape, y.shape) | ||
self.assertEqual(x.dtype, y.dtype) | ||
npt.assert_allclose(y_naive, y, rtol=1e-2) | ||
|
||
def test_walsh_hadamard_transform(self): | ||
small_n = 2**3 | ||
medium_n = 2**5 | ||
for m in [0, 2, 3, 4, 5, 6, 7]: | ||
with self.subTest(f'size {2**m}'): | ||
x = random_input(2**m) | ||
y_naive = walsh_hadamard.naive_walsh_hadamard_transform(x) | ||
y = walsh_hadamard.walsh_hadamard_transform(x, small_n, medium_n) | ||
self.assertEqual(x.shape, y.shape) | ||
self.assertEqual(x.dtype, y.dtype) | ||
npt.assert_allclose(y_naive, y, rtol=1e-2) | ||
|
||
|
||
if __name__ == '__main__': | ||
absltest.main() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -41,6 +41,7 @@ | |
'msgpack', | ||
'optax', | ||
'requests', | ||
'scipy', | ||
], | ||
python_requires='>=3.7', | ||
classifiers=[ | ||
|