Skip to content

Load your MongoDB collection into Hive. Supports complex JSON structure.

License

Notifications You must be signed in to change notification settings

gotitinc/mongo-hive

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

25 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Mongo - Hive Connector

Super-easy way to load your MongoDB collection into Hive. The code creates Hive schema automatically by performing a deep inspection of each MongoDB record and deriving the data type of each field. Supports basic data types, nested objects, array of primitive data types and array of objects.

Nested fields are flattened out into columns.

Arrays are typically split into a different (child) Hive table with parent/child relationship with the root table.

How it works

  1. Connects to your MongoDB and extract the specified collection into local file which is then copied to HDFS.
  2. MapReduce generates schema (a copy is saved back to MongoDB for info).
  3. MapReduce transforms data, breaking the array into multiple files in HDFS output folder.
  4. Create Hive tables using schema generated in step 2.
  5. Load Hive tables using HDFS files generated in step 3.

Pre-requisites

  1. You have a Hadoop cluster.
  2. You can SSH to the master node.
  3. Make sure hadoop program is in your PATH.
  4. In each node, the following is installed:
  • python (2.6+)
  • pip
  • pymongo

If not, you can run the following on each node:

yum -y install epel-release
yum -y install python-pip
pip install pymongo

Install

  1. git clone this repo on the master node in your Hadoop cluster.
  2. Run this to compile custom code needed for MapReduce:
cd java/MapReduce
mvn package
  1. Run this to compile JSON Serde:
cd java/HiveSerdes
mvn package
  1. Install Python pyhs2 package to connect to Hive Server:
yum install gcc-c++
yum install cyrus-sasl-devel.x86_64
yum install python-devel.x86_64
pip install pyhs2

In onefold.py, near the top, there are a few configuration that you can customized. Make sure these variables are set correctly before proceeding.

TMP_PATH

Where the script will store extracted data from MongoDB.

HDFS_PATH

HDFS Path where it will store files for MapReduce and Hive.

HADOOP_MAPREDUCE_STREAMING_LIB

Make sure this points to a valid hadoop-streaming.jar. The default value is set for Hortonworks HDP 2.2.

Usage

Simple case

Say you have a MongoDB collection called "test.users", and you have some records in it:

> db.users.find();
{ "_id" : ObjectId("55426ac7151a4b4d32000001"), "mobile" : { "carrier" : "Sprint", "device" : "Samsung" }, "name" : "John Doe", "age" : 24, "utm_campaign" : "Facebook_Offer", "app_version" : "2.4", "address" : { "city" : "Chicago", "zipcode" : 94012 } }

To load this into Hive,

./onefold.py --mongo mongodb://[mongodb_host]:[mongodb_port] \
             --source_db test \
             --source_collection users \
             --hiveserver_host [hive_server_host] \
             --hiveserver_port [hive_server_port]

Results:

-- Initializing Hive Util --
Creating file /tmp/onefold_mongo/users/data/1
Executing command: cat /tmp/onefold_mongo/users/data/1 | json/generate-schema-mapper.py | sort | json/generate-schema-reducer.py mongodb://xxx:xxx/test/users_schema > /dev/null
Executing command: cat /tmp/onefold_mongo/users/data/1 | json/transform-data-mapper.py mongodb://xxx:xxx/test/users_schema,/tmp/onefold_mongo/users/data_transform/output > /dev/null
...
Executing command: hadoop fs -mkdir -p onefold_mongo/users/data_transform/output/root
Executing command: hadoop fs -copyFromLocal /tmp/onefold_mongo/users/data_transform/output/root/part-00000 onefold_mongo/users/data_transform/output/root/
..
Executing HiveQL: show tables
Executing HiveQL: create table users (app_version string,utm_campaign string,id_oid string,age int,mobile_device string,name string,address_city string,hash_code string,mobile_carrier string,address_zipcode int) ROW FORMAT SERDE 'com.cloudera.hive.serde.JSONSerDe'
Executing HiveQL: load data inpath 'onefold_mongo/users/data_transform/output/root/*' into table users
-------------------
    RUN SUMMARY
-------------------
Extracted data with _id from 55426ac7151a4b4d32000001 to 55426ac7151a4b4d32000001
Extracted files are located at: /tmp/onefold_mongo/users/data/1
Hive Tables: users
Schema is stored in Mongo test.users_schema

In Hive, you can see:

hive> add jar [install_path]/java/HiveSerdes/target/hive-serdes-1.0-SNAPSHOT.jar;

hive> desc users;
app_version             string                  from deserializer
utm_campaign            string                  from deserializer
id_oid                  string                  from deserializer
age                     int                     from deserializer
mobile_device           string                  from deserializer
name                    string                  from deserializer
address_city            string                  from deserializer
hash_code               string                  from deserializer
mobile_carrier          string                  from deserializer
address_zipcode         int                     from deserializer
Time taken: 0.073 seconds, Fetched: 10 row(s)

hive> select * from users;
2.4     Facebook_Offer  55426ac7151a4b4d32000001        24      Samsung John Doe        Chicago 863a4ddd10579c8fc7e12b5bd1e188ce083eec2d        Sprint  94012
Time taken: 0.07 seconds, Fetched: 1 row(s)

In Mongo, you can see the schema saved in a collection called users_schema:

> db.users_schema.find();
{ "_id" : ObjectId("55426ae6296e827fc79300b1"), "type" : "field", "data_type" : "string-nullable", "key" : "address_city" }
{ "_id" : ObjectId("55426ae6296e827fc79300b2"), "type" : "field", "data_type" : "record-nullable", "key" : "address" }
{ "_id" : ObjectId("55426ae6296e827fc79300b3"), "type" : "field", "data_type" : "integer-nullable", "key" : "address_zipcode" }
{ "_id" : ObjectId("55426ae6296e827fc79300b4"), "type" : "field", "data_type" : "integer-nullable", "key" : "age" }
{ "_id" : ObjectId("55426ae6296e827fc79300b5"), "type" : "field", "data_type" : "string-nullable", "key" : "app_version" }
{ "_id" : ObjectId("55426ae6296e827fc79300b6"), "type" : "field", "data_type" : "string-nullable", "key" : "id_oid" }
{ "_id" : ObjectId("55426ae6296e827fc79300b7"), "type" : "field", "data_type" : "record-nullable", "key" : "id" }
{ "_id" : ObjectId("55426ae6296e827fc79300b8"), "type" : "field", "data_type" : "string-nullable", "key" : "mobile_carrier" }
{ "_id" : ObjectId("55426ae6296e827fc79300b9"), "type" : "field", "data_type" : "string-nullable", "key" : "mobile_device" }
{ "_id" : ObjectId("55426ae6296e827fc79300ba"), "type" : "field", "data_type" : "record-nullable", "key" : "mobile" }
{ "_id" : ObjectId("55426ae6296e827fc79300bb"), "type" : "field", "data_type" : "string-nullable", "key" : "name" }
{ "_id" : ObjectId("55426ae6296e827fc79300bc"), "type" : "field", "data_type" : "string-nullable", "key" : "utm_campaign" }
{ "_id" : ObjectId("55426ae72e2ecef82b7417d1"), "type" : "fragments", "fragments" : [ "root" ] }

Notes:

  1. By default, extracted data is saved in /tmp/onefold_mongo. It can be changed by specifying the tmp_path parameter.
  2. If --use_mr parameter is specified, it will use MapReduce to generate schema and transform data. Otherwise, it runs the mapper and reducer via command line using cat [input] | mapper | sort | reducer metaphor. This is handy if you don't have many records and/or just want to get this going quickly.
  3. The generated HDFS files are in JSON format, so in Hive, you need to add the included JSON Serde. In Hive, run this command before select from the generated tables: add jar [install_path]/hive-serdes-1.0-SNAPSHOT.jar
  4. Nested objects like mobile and address in the above example are flattened out in the Hive table.
  5. hash_code column is added. It's basically an SHA1 hash of the object. It's useful later on when we use hash_code as parent-child key to represent array in a child table.

Now let's add a record with new fields

In Mongo, one new records is added with some new fields:

> db.users.find();
...
{ "_id" : ObjectId("55426c42151a4b4d9e000001"), "hobbies" : [ "reading", "cycling" ], "age" : 34, "work_history" : [ { "to" : "present", "from" : 2013, "name" : "IBM" }, { "to" : 2013, "from" : 2003, "name" : "Bell" } ], "utm_campaign" : "Google", "name" : "Alexander Keith", "app_version" : "2.5", "mobile" : { "device" : "iPhone", "carrier" : "Rogers" }, "address" : { "state" : "Ontario", "zipcode" : "M1K3A5", "street" : "26 Marshall Lane", "city" : "Toronto" } }

New fields added to address nested object. address.zipcode is now string (used to be integer). A new hobbies field is added that is a string array. A new work_history field is added that is an array of nested objects.

Run the command with parameters --write_disposition append and --query '{"_id":{"$gt":ObjectId("55426ac7151a4b4d32000001")}}':

./onefold.py --mongo mongodb://[mongodb_host]:[mongodb_port] \
             --source_db test \
             --source_collection users \
             --hiveserver_host [hive_server_host] \
             --hiveserver_port [hive_server_port] \
             --write_disposition append \
             --query '{"_id":{"$gt":ObjectId("55426f15151a4b4e46000001")}}'

Results:

-- Initializing Hive Util --
...
Executing command: hadoop fs -mkdir -p onefold_mongo/users/data_transform/output/root
Executing command: hadoop fs -copyFromLocal /tmp/onefold_mongo/users/data_transform/output/root/part-00000 onefold_mongo/users/data_transform/output/root/
Executing command: hadoop fs -mkdir -p onefold_mongo/users/data_transform/output/work_history
Executing command: hadoop fs -copyFromLocal /tmp/onefold_mongo/users/data_transform/output/work_history/part-00000 onefold_mongo/users/data_transform/output/work_history/
Executing command: hadoop fs -mkdir -p onefold_mongo/users/data_transform/output/hobbies
Executing command: hadoop fs -copyFromLocal /tmp/onefold_mongo/users/data_transform/output/hobbies/part-00000 onefold_mongo/users/data_transform/output/hobbies/
...
Executing HiveQL: alter table `users` change `address_zipcode` `address_zipcode` string
Executing HiveQL: alter table `users` add columns (`address_state` string)
Executing HiveQL: alter table `users` add columns (`address_street` string)
Executing HiveQL: create table `users_hobbies` (parent_hash_code string,hash_code string,`value` string) ROW FORMAT SERDE 'com.cloudera.hive.serde.JSONSerDe'
Executing HiveQL: create table `users_work_history` (parent_hash_code string,hash_code string,`from` int,`name` string,`to` string) ROW FORMAT SERDE 'com.cloudera.hive.serde.JSONSerDe'
...
-------------------
    RUN SUMMARY
-------------------
Extracted data with _id from 55426f52151a4b4e5a000001 to 55426f52151a4b4e5a000001
Extracted files are located at: /tmp/onefold_mongo/users/data/1
Hive Tables: users users_hobbies users_work_history
Schema is stored in Mongo test.users_schema

In Hive, two new tables are created: users_hobbies and users_work_history

hive> show tables;
users
users_hobbies
users_work_history

hive> desc users_hobbies;
OK
parent_hash_code        string                  from deserializer
hash_code               string                  from deserializer
value                   string                  from deserializer
Time taken: 0.068 seconds, Fetched: 3 row(s)

hive> desc users_work_history;
OK
parent_hash_code        string                  from deserializer
hash_code               string                  from deserializer
from                    int                     from deserializer
name                    string                  from deserializer
to                      string                  from deserializer
Time taken: 0.067 seconds, Fetched: 5 row(s)

You can join parent and child table like:

hive> select * from users join users_hobbies on users.hash_code = users_hobbies.parent_hash_code
                          join users_work_history on users.hash_code = users_work_history.parent_hash_code;

More Examples

You can provide your own schema collection name.

./onefold.py --mongo mongodb://[mongodb_host]:[mongodb_port] \
             --source_db test \
             --source_collection users \
             --schema_db test \
             --schema_collection users_schema \
             --hiveserver_host [hive_server_host] \
             --hiveserver_port [hive_server_port]

You can specify the name of Hive table generated.

./onefold.py --mongo mongodb://[mongodb_host]:[mongodb_port] \
             --source_db test \
             --source_collection users \
             --hive_db_name our_mongo_db \
             --hive_table_name our_mongo_users \
             --hiveserver_host [hive_server_host] \
             --hiveserver_port [hive_server_port]

By default, the program doesn't use MapReduce. If you want to use MapReduce, use the --use_mr flag.

./onefold.py --mongo mongodb://[mongodb_host]:[mongodb_port] \
             --source_db test \
             --source_collection users \
             --use_mr \
             --hiveserver_host [hive_server_host] \
             --hiveserver_port [hive_server_port]

Parameters

--mongo MongoDB connectivity URI, e.g. mongodb://127.0.0.1:27017

--source_db The MongoDB database name from which to extract data.

--source_collection The MongoDB collection name from which to extract data.

--hiveserver_host Hive server host.

--hiveserver_port Hive server port.

--query Optional query users can specify when doing extraction. Useful for filtering out only incremental records. See below for some examples.

--tmp_path Optional. Path used to store extracted data. Default is /tmp/onefold_mongo

--schema_db Optional. The MongoDB database name to which schema data is written. Default to the same database as source.

--schema_collection Optional. The MongoDB collection to which schema data is written. Default to [source_collection]_schema.

--write_disposition Optional. Valid values are overwrite and append. Tells the program whether to overwrite the Hive table or to append to existing table.

--hive_db_name Optional. The Hive database to use. If not specified, it will use default database.

--hive_table_name Optional. The Hive table name to use. If not specified, it will use source collection name.

--use_mr If this parameter is specified, the program will use MapReduce to generate schema and transform data. If not, the mapper and reducer will be executed as command line using the cat [input] | mapper | sort | reducer metaphore. This is useful for small data set and if you just want to get things up and running quickly.

--policy_file Use the specified file for policies which you can use to configure required fields, etc. See below for supported policies

Policy Manager

Policy manager is used to control schema generation. With the policy manager, you can:

  1. Specify required fields. If the field is missing, the document is rejected. Rejected documents are saved in [TMP_PATH]/[collection_name]/rejected folder.
  2. Enforce data type for certain fields. In the example below, age is forced to be integer. So if there is a document that contains non-integer, the field will be null.

Example policy file:

[
    {
        "key": "last_name",
        "required": true
    },
    {
        "key": "address.zipcode",
        "data_type": "integer"
    }
]

Save the policy file, and pass the policy file in as command line argument via --policy_file.

Query Examples

To query for charge_id > 1237489:

--query '{"charge_id":{"$gt":1237489}}'

To query for _id > 55401a60151a4b1a4f000001:

--query '{"_id": {"$gt":ObjectId("55401a60151a4b1a4f000001")}}'

Known Issues

  • There is no easy way to capture records that were updated in MongoDB. We are working on capturing oplog and replay inserts and updates.
  • The ways in which the data type of a given changes over time is huge. A field can change from an int, to a string, to an array of string, to an array of mix types, to an array of complex objects over time. We haven't tested all the different combinations, but very interested in support as many as we can. Let us know if you have found a case that we don't support well.
  • We don't use Hive's built-in complex data types like struct and arrays. That is coming in the next release. Let us know if that's something you are very interested in.

FAQ

Support

Email jorge@onefold.io.

About

Load your MongoDB collection into Hive. Supports complex JSON structure.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published