-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
* cifar10 training * optax --------- Co-authored-by: samho <>
- Loading branch information
1 parent
5e5ccc0
commit 5c19ecd
Showing
2 changed files
with
173 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,159 @@ | ||
# Copyright 2018 The JAX Authors. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# https://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
"""A basic MNIST example using Numpy and JAX. | ||
The primary aim here is simplicity and minimal dependencies. | ||
""" | ||
|
||
|
||
import time | ||
|
||
import datasets | ||
import jax | ||
import jax.numpy as jnp | ||
import numpy as np | ||
import numpy.random as npr | ||
import optax | ||
from jax import grad, jit, lax | ||
|
||
import jax_scaled_arithmetics as jsa | ||
|
||
|
||
def logsumexp(a, axis=None, keepdims=False): | ||
dims = (axis,) | ||
amax = jnp.max(a, axis=dims, keepdims=keepdims) | ||
# FIXME: not proper scale propagation, introducing NaNs | ||
# amax = lax.stop_gradient(lax.select(jnp.isfinite(amax), amax, lax.full_like(amax, 0))) | ||
amax = lax.stop_gradient(amax) | ||
out = lax.sub(a, amax) | ||
out = lax.exp(out) | ||
out = lax.add(lax.log(jnp.sum(out, axis=dims, keepdims=keepdims)), amax) | ||
return out | ||
|
||
|
||
def init_random_params(scale, layer_sizes, rng=npr.RandomState(0)): | ||
return [(scale * rng.randn(m, n), scale * rng.randn(n)) for m, n, in zip(layer_sizes[:-1], layer_sizes[1:])] | ||
|
||
|
||
def print_mean_std(name, v): | ||
data, scale = jsa.lax.get_data_scale(v) | ||
# Always use np.float32, to avoid floating errors in descaling + stats. | ||
v = jsa.asarray(data, dtype=np.float32) | ||
m, s = np.mean(v), np.std(v) | ||
# print(data) | ||
print(f"{name}: MEAN({m:.4f}) / STD({s:.4f}) / SCALE({scale:.4f})") | ||
|
||
|
||
def predict(params, inputs): | ||
activations = inputs | ||
for w, b in params[:-1]: | ||
# Matmul + relu | ||
outputs = jnp.dot(activations, w) + b | ||
activations = jnp.maximum(outputs, 0) | ||
|
||
final_w, final_b = params[-1] | ||
logits = jnp.dot(activations, final_w) + final_b | ||
|
||
# jsa.ops.debug_callback(partial(print_mean_std, "Logits"), logits) | ||
# (logits,) = jsa.ops.debug_callback_grad(partial(print_mean_std, "LogitsGrad"), logits) | ||
|
||
# Dynamic rescaling of the gradient, as logits gradient not properly scaled. | ||
logits = jsa.ops.dynamic_rescale_l2_grad(logits) | ||
output = logits - logsumexp(logits, axis=1, keepdims=True) | ||
|
||
return output | ||
|
||
|
||
def loss(params, batch): | ||
inputs, targets = batch | ||
preds = predict(params, inputs) | ||
return -jnp.mean(jnp.sum(preds * targets, axis=1)) | ||
|
||
|
||
def accuracy(params, batch): | ||
inputs, targets = batch | ||
target_class = jnp.argmax(targets, axis=1) | ||
predicted_class = jnp.argmax(predict(params, inputs), axis=1) | ||
return jnp.mean(predicted_class == target_class) | ||
|
||
|
||
if __name__ == "__main__": | ||
width = 256 | ||
lr = 1e-3 | ||
use_autoscale = False | ||
training_dtype = np.float32 | ||
autoscale = jsa.autoscale if use_autoscale else lambda f: f | ||
|
||
layer_sizes = [3072, width, width, 10] | ||
param_scale = 1.0 | ||
num_epochs = 10 | ||
batch_size = 128 | ||
scale_dtype = np.float32 | ||
|
||
train_images, train_labels, test_images, test_labels = datasets.cifar() | ||
num_train = train_images.shape[0] | ||
num_complete_batches, leftover = divmod(num_train, batch_size) | ||
num_batches = num_complete_batches + bool(leftover) | ||
# num_batches = 2 | ||
|
||
def data_stream(): | ||
rng = npr.RandomState(0) | ||
while True: | ||
perm = rng.permutation(num_train) | ||
for i in range(num_batches): | ||
batch_idx = perm[i * batch_size : (i + 1) * batch_size] | ||
yield train_images[batch_idx], train_labels[batch_idx] | ||
|
||
batches = data_stream() | ||
params = init_random_params(param_scale, layer_sizes) | ||
params = jax.tree_map(lambda v: v.astype(training_dtype), params) | ||
# Transform parameters to `ScaledArray` and proper dtype. | ||
optimizer = optax.adam(learning_rate=lr, eps=1e-5) | ||
opt_state = optimizer.init(params) | ||
|
||
if use_autoscale: | ||
params = jsa.as_scaled_array(params, scale=scale_dtype(param_scale)) | ||
|
||
params = jax.tree_map(lambda v: v.astype(training_dtype), params, is_leaf=jsa.core.is_scaled_leaf) | ||
|
||
@jit | ||
@autoscale | ||
def update(params, batch, opt_state): | ||
grads = grad(loss)(params, batch) | ||
updates, opt_state = optimizer.update(grads, opt_state) | ||
params = optax.apply_updates(params, updates) | ||
return params, opt_state | ||
|
||
for epoch in range(num_epochs): | ||
start_time = time.time() | ||
for _ in range(num_batches): | ||
batch = next(batches) | ||
# Scaled micro-batch + training dtype cast. | ||
if use_autoscale: | ||
batch = jsa.as_scaled_array(batch, scale=scale_dtype(param_scale)) | ||
batch = jax.tree_map(lambda v: v.astype(training_dtype), batch, is_leaf=jsa.core.is_scaled_leaf) | ||
|
||
with jsa.AutoScaleConfig(rounding_mode=jsa.Pow2RoundMode.DOWN, scale_dtype=scale_dtype): | ||
params, opt_state = update(params, batch, opt_state) | ||
|
||
epoch_time = time.time() - start_time | ||
|
||
# Evaluation in float32, for consistency. | ||
raw_params = jsa.asarray(params, dtype=np.float32) | ||
train_acc = accuracy(raw_params, (train_images, train_labels)) | ||
test_acc = accuracy(raw_params, (test_images, test_labels)) | ||
print(f"Epoch {epoch} in {epoch_time:0.2f} sec") | ||
print(f"Training set accuracy {train_acc:0.5f}") | ||
print(f"Test set accuracy {test_acc:0.5f}") |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters