Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Renaming cast_ml_dtype methods to reduce_precision_dtype. #119

Merged
merged 1 commit into from
Jun 28, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
16 changes: 8 additions & 8 deletions examples/mnist/mnist_classifier_from_scratch_fp8.py
Original file line number Diff line number Diff line change
Expand Up @@ -59,30 +59,30 @@ def init_random_params(scale, layer_sizes, rng=npr.RandomState(0)):


def predict(params, inputs, use_fp8=True):
cast_ml_dtype = jsa.ops.cast_ml_dtype if use_fp8 else lambda x, d: x
cast_ml_dtype_grad = jsa.ops.cast_ml_dtype_grad if use_fp8 else lambda x, d: x
reduce_precision_dtype = jsa.ops.reduce_precision_dtype if use_fp8 else lambda x, d: x
reduce_precision_dtype_grad = jsa.ops.reduce_precision_dtype_grad if use_fp8 else lambda x, d: x

activations = inputs
for w, b in params[:-1]:
# Forward FP8 casting.
w = cast_ml_dtype(w, ml_dtypes.float8_e4m3fn)
activations = cast_ml_dtype(activations, ml_dtypes.float8_e4m3fn)
w = reduce_precision_dtype(w, ml_dtypes.float8_e4m3fn)
activations = reduce_precision_dtype(activations, ml_dtypes.float8_e4m3fn)
# Matmul
outputs = jnp.dot(activations, w)
# Backward FP8 casting
outputs = cast_ml_dtype_grad(outputs, ml_dtypes.float8_e5m2)
outputs = reduce_precision_dtype_grad(outputs, ml_dtypes.float8_e5m2)

# Bias + relu
outputs = outputs + b
activations = jnp.maximum(outputs, 0)

final_w, final_b = params[-1]
# Forward FP8 casting.
# final_w = jsa.ops.cast_ml_dtype(final_w, ml_dtypes.float8_e4m3fn)
activations = cast_ml_dtype(activations, ml_dtypes.float8_e4m3fn)
# final_w = jsa.ops.reduce_precision_dtype(final_w, ml_dtypes.float8_e4m3fn)
activations = reduce_precision_dtype(activations, ml_dtypes.float8_e4m3fn)
logits = jnp.dot(activations, final_w)
# Backward FP8 casting
logits = cast_ml_dtype_grad(logits, ml_dtypes.float8_e5m2)
logits = reduce_precision_dtype_grad(logits, ml_dtypes.float8_e5m2)

logits = logits + final_b

Expand Down
4 changes: 2 additions & 2 deletions examples/scalify-quickstart.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -279,12 +279,12 @@
"source": [
"import ml_dtypes\n",
"# Minimal FP8 simulated support is provided using jax.lax.reduce_precision and ml_dtypes.\n",
"# Similarly to `dynamic_rescale`, `cast_ml_dtype(_grad)` are available to cast in forward and backward passes\n",
"# Similarly to `dynamic_rescale`, `reduce_precision_dtype(_grad)` are available to cast in forward and backward passes\n",
"sc = jsa.as_scaled_array(np.array([17., 19.]), scale=np.float32(2))\n",
"\n",
"@jsa.scalify\n",
"def cast_fn(v):\n",
" return jsa.ops.cast_ml_dtype(v, ml_dtypes.float8_e4m3fn)\n",
" return jsa.ops.reduce_precision_dtype(v, ml_dtypes.float8_e4m3fn)\n",
"\n",
"sc_fp8 = cast_fn(sc)\n",
"print(\"Scaled input in FP32:\", sc)\n",
Expand Down
2 changes: 1 addition & 1 deletion jax_scalify/ops/__init__.py
Original file line number Diff line number Diff line change
@@ -1,6 +1,6 @@
# Copyright (c) 2023 Graphcore Ltd. All rights reserved.
from .cast import reduce_precision_dtype, reduce_precision_dtype_grad # noqa: F401
from .debug import debug_callback, debug_callback_grad, debug_print, debug_print_grad # noqa: F401
from .ml_dtypes import cast_ml_dtype, cast_ml_dtype_grad # noqa: F401
from .rescaling import ( # noqa: F401
dynamic_rescale_l1,
dynamic_rescale_l1_grad,
Expand Down
10 changes: 5 additions & 5 deletions jax_scalify/ops/ml_dtypes.py → jax_scalify/ops/cast.py
Original file line number Diff line number Diff line change
Expand Up @@ -9,17 +9,17 @@
from .rescaling import fn_bwd_identity_fwd, fn_fwd_identity_bwd


def cast_ml_dtype_base(arr: Array, dtype: DTypeLike) -> Array:
def reduce_precision_dtype_base(arr: Array, dtype: DTypeLike) -> Array:
"""`Fake` cast to an ML dtype (e.g. FP8), using JAX LAX `reduce_precision` operator."""
info = ml_dtypes.finfo(dtype)
return jax.lax.reduce_precision(arr, exponent_bits=info.nexp, mantissa_bits=info.nmant)


def cast_ml_dtype(arr: Array, dtype: DTypeLike) -> Array:
def reduce_precision_dtype(arr: Array, dtype: DTypeLike) -> Array:
"""`Fake` cast to an ML dtype, on the forward pass (no-op on backward pass)."""
return partial(fn_fwd_identity_bwd, lambda v: cast_ml_dtype_base(v, dtype))(arr)
return partial(fn_fwd_identity_bwd, lambda v: reduce_precision_dtype_base(v, dtype))(arr)


def cast_ml_dtype_grad(arr: Array, dtype: DTypeLike) -> Array:
def reduce_precision_dtype_grad(arr: Array, dtype: DTypeLike) -> Array:
"""`Fake` cast to an ML dtype on the backward pass (no-op on forward pass)."""
return partial(fn_bwd_identity_fwd, lambda v: cast_ml_dtype_base(v, dtype))(arr)
return partial(fn_bwd_identity_fwd, lambda v: reduce_precision_dtype_base(v, dtype))(arr)
10 changes: 5 additions & 5 deletions tests/ops/test_ml_dtypes.py → tests/ops/test_cast.py
Original file line number Diff line number Diff line change
Expand Up @@ -9,18 +9,18 @@
from numpy.typing import NDArray

from jax_scalify.core import scaled_array, scalify
from jax_scalify.ops import cast_ml_dtype
from jax_scalify.ops import reduce_precision_dtype


class CastMLDtypeTests(chex.TestCase):
@parameterized.parameters(
{"ml_dtype": ml_dtypes.float8_e4m3fn},
{"ml_dtype": ml_dtypes.float8_e5m2},
)
def test__cast_ml_dtype__consistent_rounding_down(self, ml_dtype):
def test__reduce_precision_dtype__consistent_rounding_down(self, ml_dtype):
# Values potentially "problematic" in FP8.
values: NDArray[np.float16] = np.array([17, -17, 8, 1, 9, 11, 18], np.float16)
out = cast_ml_dtype(values, dtype=ml_dtype)
out = reduce_precision_dtype(values, dtype=ml_dtype)
expected_out = values.astype(ml_dtype)
assert out.dtype == values.dtype
npt.assert_array_equal(out, expected_out)
Expand All @@ -29,10 +29,10 @@ def test__cast_ml_dtype__consistent_rounding_down(self, ml_dtype):
{"ml_dtype": ml_dtypes.float8_e4m3fn},
{"ml_dtype": ml_dtypes.float8_e5m2},
)
def test__cast_ml_dtype__scalify_compatiblity(self, ml_dtype):
def test__reduce_precision_dtype__scalify_compatiblity(self, ml_dtype):
values: NDArray[np.float16] = np.array([17, -17, 8, 1, 9, 11, 18], np.float16)
arr = scaled_array(values, np.float32(1))
out = scalify(partial(cast_ml_dtype, dtype=ml_dtype))(arr)
out = scalify(partial(reduce_precision_dtype, dtype=ml_dtype))(arr)

npt.assert_array_equal(out.scale, arr.scale)
npt.assert_array_equal(out, np.asarray(arr.data).astype(ml_dtype))
Loading