Skip to content

grapheco/grapheco.github.io

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

25 Commits
 
 
 
 
 
 

Repository files navigation

InteractiveGraph

GitHub releases GitHub downloads GitHub issues GitHub forks GitHub stars GitHub license

InteractiveGraph provides a web-based interactive operating framwork for large graph data, which may come from a GSON file, or an online Neo4j graph database.

InteractiveGraph also provides three applications built on the framework: GraphNavigator, GraphExplorer and RelFinder.

GraphNavigator: online demo https://grapheco.github.io/InteractiveGraph/dist/examples/example1.html GraphNavigator

GraphExplorer: online demo https://grapheco.github.io/InteractiveGraph/dist/examples/example2.html GraphExplorer

RelFinder: online demo https://grapheco.github.io/InteractiveGraph/dist/examples/example3.html RelFinder

OpenWebFlow

GitHub issues GitHub forks GitHub stars GitHub license

OpenWebFlow是基于Activiti(官方网站http://activiti.org/,代码托管在https://github.com/Activiti/Activiti)扩展的工作流引擎,它扩展的功能包括:

  • 完全接管了Activiti对活动(activity)权限的管理。Activiti允许在设计model的时候指定每个活动的执行权限,但是,业务系统可能需要根据实际情况动态设置这些任务的执行权限(如:动态的Group)。OpenWebFlow完全实现了与流程定义时期的解耦,即用户对活动的访问控制信息单独管理(而不是在流程定义中预先写死),这样有利于动态调整权限,详见自定义活动权限管理
  • 完全接管了Activiti对用户表(IDENTITY_XXX表)的管理。在标准的工作流定义中,每个节点可以指定其候选人和候选用户组,但是比较惨的是,Activiti绑架了用户信息表的设计!这个是真正致命的,因为几乎每个业务系统都会属于自己的用户信息结构(包括User/Group/Membership),但不一定它存储在Activiti喜欢的那个库中,表的结构也不一定一样,有的时候,某些信息(如:动态的Group)压根儿就不采用表来存储。OpenWebFlow剥离了用户信息表的统一管理,客户程序可以忘掉Activiti的用户表、群组表、成员关系表,详见自定义用户成员关系管理
  • 允许运行时定义activity!彻底满足“中国特色”,并提供了安全的(同时也是优雅的)催办、代办、加签(包括前加签/后加签)、自由跳转(包括前进/后)、分裂节点等功能

PiFlow

GitHub releases GitHub stars GitHub forks GitHub downloads GitHub issues GitHub license

πFlow is an easy to use, powerful big data pipeline system. Try with: http://piflow.cstcloud.cn/piflow-web/

*Features

  • Easy to use
    • provide a WYSIWYG web interface to configure data flow
    • monitor data flow status
    • check the logs of data flow
    • provide checkpoints
  • Strong scalability:
    • Support customized development of data processing components
  • Superior performance
    • based on distributed computing engine Spark
  • Powerful
    • 100+ data processing components available
    • include spark、mllib、hadoop、hive、hbase、solr、redis、memcache、elasticSearch、jdbc、mongodb、http、ftp、xml、csv、json,etc.

About

Offical website of grapheco

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published