-
Notifications
You must be signed in to change notification settings - Fork 24
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[feature] add CLAP score metric to compute similarity between text an…
…d audio embeddings (#28) * [feature] add clap to available models * [test] add test_all notebook to test all available models configs * [update] requirements * [bug] fix requirements for clap module * typo in test_all notebook. clearer params description for fad.score function * moved load_audio_task from fad.py to utils.py * moved load_audio_task to utils * reviewed functions descriptions * renamed test_all notebook * renamed test_all notebook * clap score implementation * clap score test files and notebook * [chore] add channels argument in to resolve conflict * [chore] minor fix on device --------- Co-authored-by: Hao Hao Tan <tanh0207@e.ntu.edu.sg>
- Loading branch information
Showing
12 changed files
with
1,240 additions
and
39 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1 +1,2 @@ | ||
from .fad import * | ||
from .fad import * | ||
from .clap_score import * |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,341 @@ | ||
""" | ||
Calculate the CLAP score between a text list and an audio directory | ||
CLAP score is an audio adaptation of the CLIP score: https://arxiv.org/abs/2104.08718 | ||
While CLIP score is defined in https://arxiv.org/abs/2104.08718 as: | ||
CLIPscore = mean(max(0, w * cosine_similarity(text_embeddings, audio_embeddings)) | ||
the CLAP score is implemented in https://arxiv.org/abs/2301.12661 and https://arxiv.org/abs/2401.04577 as: | ||
CLAPscore = mean(cosine_similarity(text_embeddings, audio_embeddings)) | ||
""" | ||
import os | ||
import numpy as np | ||
import resampy | ||
import soundfile as sf | ||
import torch | ||
import laion_clap | ||
|
||
from multiprocessing.dummy import Pool as ThreadPool | ||
from scipy import linalg | ||
from torch import nn | ||
from tqdm import tqdm | ||
|
||
from .utils import load_audio_task | ||
|
||
|
||
class CLAPScore: | ||
def __init__( | ||
self, | ||
ckpt_dir=None, | ||
submodel_name="630k-audioset", | ||
verbose=False, | ||
audio_load_worker=8, | ||
enable_fusion=False, | ||
): | ||
""" | ||
Initialize CLAP score | ||
-- ckpt_dir: folder where the downloaded checkpoints are stored | ||
-- submodel_name: determines which clap checkpoint to use. | ||
options: ["630k-audioset", "630k", "music_audioset", "music_speech", "music_speech_audioset"] | ||
-- enable_fusion: whether to use fusion for clap models (valid depending on the specific submodel used) | ||
""" | ||
assert submodel_name in ["630k-audioset", "630k", "music_audioset", "music_speech", "music_speech_audioset"] | ||
self.submodel_name = submodel_name | ||
self.sample_rate = 48000 # CLAP model sample rate | ||
self.device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu') | ||
self.verbose = verbose | ||
self.audio_load_worker = audio_load_worker | ||
self.enable_fusion = enable_fusion | ||
if ckpt_dir is not None: | ||
os.makedirs(ckpt_dir, exist_ok=True) | ||
torch.hub.set_dir(ckpt_dir) | ||
self.ckpt_dir = ckpt_dir | ||
else: | ||
# by default `ckpt_dir` is `torch.hub.get_dir()` | ||
self.ckpt_dir = torch.hub.get_dir() | ||
self.__get_model() | ||
|
||
def __get_model(self): | ||
""" | ||
Get ckpt and set model for the specified model_name | ||
""" | ||
# choose the right checkpoint and model | ||
if self.submodel_name == "630k-audioset": | ||
if self.enable_fusion: | ||
download_name = "630k-audioset-fusion-best.pt" | ||
else: | ||
download_name = "630k-audioset-best.pt" | ||
elif self.submodel_name == "630k": | ||
if self.enable_fusion: | ||
download_name = "630k-fusion-best.pt" | ||
else: | ||
download_name = "630k-best.pt" | ||
elif self.submodel_name == "music_audioset": | ||
download_name = "music_audioset_epoch_15_esc_90.14.pt" | ||
elif self.submodel_name == "music_speech": | ||
download_name = "music_speech_epoch_15_esc_89.25.pt" | ||
elif self.submodel_name == "music_speech_audioset": | ||
download_name = "music_speech_audioset_epoch_15_esc_89.98.pt" | ||
|
||
model_path = os.path.join(self.ckpt_dir, download_name) | ||
|
||
# download checkpoint | ||
if not (os.path.exists(model_path)): | ||
if self.verbose: | ||
print("[CLAP Score] Downloading {}...".format(model_path)) | ||
torch.hub.download_url_to_file( | ||
url=f"https://huggingface.co/lukewys/laion_clap/resolve/main/{download_name}", | ||
dst=model_path | ||
) | ||
|
||
# init model and load checkpoint | ||
if self.submodel_name in ["630k-audioset", "630k"]: | ||
self.model = laion_clap.CLAP_Module(enable_fusion=self.enable_fusion, | ||
device=self.device) | ||
elif self.submodel_name in ["music_audioset", "music_speech", "music_speech_audioset"]: | ||
self.model = laion_clap.CLAP_Module(enable_fusion=self.enable_fusion, | ||
amodel='HTSAT-base', | ||
device=self.device) | ||
self.model.load_ckpt(model_path) | ||
self.model.eval() | ||
|
||
def __load_text_file(self, text_path, text_column): | ||
""" | ||
Load text file and return a list of text captions. | ||
Parameters: | ||
-- text_path (str): Path to the file containing text captions. | ||
-- text_column (str): Name of the column containing text captions. | ||
Returns: | ||
-- list: A list of text captions. | ||
""" | ||
try: | ||
import pandas as pd | ||
df = pd.read_csv(text_path) | ||
text_data = df[text_column].tolist() | ||
return text_data | ||
except Exception as e: | ||
print("[CLAP score] __load_text_file threw an exception: {}".format(str(e))) | ||
return [] | ||
|
||
def get_text_embeddings(self, text_data): | ||
""" | ||
Compute text embeddings for a list of text captions. | ||
Parameters: | ||
-- text_data (list): A list of text captions. | ||
Returns: | ||
-- np.array: An array of text embeddings. | ||
""" | ||
try: | ||
text_embds = self.model.get_text_embedding(text_data) | ||
return text_embds | ||
except Exception as e: | ||
print("[CLAP score] get_text_embeddings threw an exception: {}".format(str(e))) | ||
return np.array([]) | ||
|
||
def get_audio_embeddings(self, x, sr): | ||
""" | ||
Get audio embeddings. | ||
Params: | ||
-- x : a list of np.ndarray audio samples | ||
-- sr : sampling rate. | ||
""" | ||
embd_lst = [] | ||
try: | ||
for audio in tqdm(x, disable=(not self.verbose)): | ||
audio = torch.tensor(audio).float().unsqueeze(0) | ||
embd = self.model.get_audio_embedding_from_data(audio, use_tensor=True) | ||
|
||
if self.device == torch.device('cuda'): | ||
embd = embd.cpu() | ||
|
||
if torch.is_tensor(embd): | ||
embd = embd.detach().numpy() | ||
|
||
embd_lst.append(embd) | ||
except Exception as e: | ||
print("[CLAP score] get_audio_embeddings threw an exception: {}".format(str(e))) | ||
|
||
return np.concatenate(embd_lst, axis=0) | ||
|
||
def __load_audio_files(self, dir, dtype="float32"): | ||
task_results = [] | ||
|
||
pool = ThreadPool(self.audio_load_worker) | ||
pbar = tqdm(total=len(os.listdir(dir)), disable=(not self.verbose)) | ||
|
||
def update(*a): | ||
pbar.update() | ||
|
||
if self.verbose: | ||
print("[CLAP score] Loading audio from {}...".format(dir)) | ||
for fname in os.listdir(dir): | ||
# assume CLAP input audio to always be mono channel | ||
res = pool.apply_async( | ||
load_audio_task, | ||
args=(os.path.join(dir, fname), self.sample_rate, 1, dtype), | ||
callback=update | ||
) | ||
task_results.append(res) | ||
pool.close() | ||
pool.join() | ||
|
||
return [k.get() for k in task_results] | ||
|
||
# def __cosine_similarity(self, x, y): | ||
# """ | ||
# Compute cosine similarity between two matrices. | ||
|
||
# Parameters: | ||
# -- x (np.array): A matrix. | ||
# -- y (np.array): A matrix. | ||
|
||
# Returns: | ||
# -- np.array: A vector of cosine similarities. | ||
# """ | ||
# # Check x and y are 2-dimensional arrays and have the same shape | ||
# assert len(x.shape) == 2 and len(y.shape) == 2 | ||
# assert x.shape == y.shape | ||
|
||
# # Compute dot product of x and y | ||
# dot_product = np.sum((x * y), axis=-1) | ||
# # Compute L2 norm of x and y | ||
# x_norm = np.linalg.norm(x, axis=-1) + 1e-8 # avoid division by zero | ||
# y_norm = np.linalg.norm(y, axis=-1) + 1e-8 | ||
# # Compute cosine similarity | ||
# sim_scores = dot_product / (x_norm * y_norm) | ||
# return sim_scores | ||
|
||
def __cosine_similarity(self, x, y): | ||
""" | ||
Compute cosine similarity between two matrices. | ||
As implemented in: https://github.com/microsoft/CLAP/blob/main/msclap/CLAPWrapper.py#L329 | ||
Parameters: | ||
-- x (np.array): A matrix. | ||
-- y (np.array): A matrix. | ||
Returns: | ||
-- np.array: A vector of cosine similarities. | ||
""" | ||
# Check x and y are 2-dimensional arrays and have the same shape | ||
assert len(x.shape) == 2 and len(y.shape) == 2 | ||
assert x.shape == y.shape | ||
|
||
x = x/(np.linalg.norm(x, axis=-1, keepdims=True) + 1e-8) # avoid division by zero | ||
y = y/(np.linalg.norm(y, axis=-1, keepdims=True) + 1e-8) | ||
similarity_matrix = y @ x.T | ||
sim_scores = similarity_matrix.T.diagonal() | ||
return sim_scores | ||
|
||
def calculate_clap_score(self, text_embds, audio_embds, batch_size): | ||
""" | ||
Calculate the CLAP score between text and audio embeddings. | ||
As implemented in: https://github.com/Text-to-Audio/Make-An-Audio/blob/main/wav_evaluation/cal_clap_score.py#L50 | ||
Parameters: | ||
-- text_embds (np.array): An array of text embeddings. | ||
-- audio_embds (np.array): An array of audio embeddings. | ||
-- batch_size (int): Batch size for computing CLAP score. | ||
Returns: | ||
-- float: The mean CLAP score. | ||
-- float: The standard deviation of the CLAP score. | ||
""" | ||
try: | ||
# Calculate CLAP score | ||
sim_scores_all = None | ||
for i in range(0, len(text_embds), batch_size): | ||
text_embds_batch = text_embds[i:i+batch_size] | ||
audio_embds_batch = audio_embds[i:i+batch_size] | ||
sim_scores = self.__cosine_similarity(text_embds_batch, audio_embds_batch) | ||
if sim_scores_all is None: | ||
sim_scores_all = sim_scores | ||
else: | ||
sim_scores_all = np.concatenate((sim_scores_all, sim_scores)) | ||
clap_score_mean = np.mean(sim_scores_all.flatten()) | ||
clap_score_std = np.std(sim_scores_all.flatten()) | ||
return clap_score_mean, clap_score_std | ||
except Exception as e: | ||
print("[CLAP score] calculate_clap_score threw an exception: {}".format(str(e))) | ||
return -1, -1 | ||
|
||
def score(self, | ||
text_path, | ||
audio_dir, | ||
text_column="caption", | ||
text_embds_path=None, | ||
audio_embds_path=None, | ||
batch_size=10, | ||
dtype="float32", | ||
): | ||
""" | ||
Computes the CLAP score between a text and audio embeddings. | ||
Parameters: | ||
-- text_path (str): Path to the file containing text captions. | ||
-- audio_dir (str): Path to the directory containing audio files. | ||
-- text_column (str, optional): Name of the column containing text captions. Default is "caption". | ||
-- text_embds_path (str, optional): Path to save/load text embeddings (e.g., /folder/txt_embds.npy). If None, embeddings won't be saved. | ||
-- audio_embds_path (str, optional): Path to save/load audio embeddings (e.g., /folder/test_embds.npy). If None, embeddings won't be saved. | ||
-- dtype (str, optional): Data type for loading audio. Default is "float32". | ||
Returns: | ||
-- float: The CLAP score between text and audio embeddings. | ||
""" | ||
try: | ||
# Load or compute text embeddings | ||
if text_embds_path is not None and os.path.exists(text_embds_path): | ||
if self.verbose: | ||
print(f"[CLAP score] Loading text embeddings from {text_embds_path}...") | ||
text_embds = np.load(text_embds_path) | ||
else: | ||
text_data = self.__load_text_file(text_path, text_column) | ||
text_embds = self.get_text_embeddings(text_data) | ||
if text_embds_path: | ||
os.makedirs(os.path.dirname(text_embds_path), exist_ok=True) | ||
np.save(text_embds_path, text_embds) | ||
if self.verbose: | ||
print(f"[CLAP score] Loaded {len(text_embds)} text embeddings of shape {text_embds.shape}") | ||
|
||
# Load or compute audio embeddings | ||
if audio_embds_path is not None and os.path.exists(audio_embds_path): | ||
if self.verbose: | ||
print(f"[CLAP score] Loading audio embeddings from {audio_embds_path}...") | ||
audio_embds = np.load(audio_embds_path) | ||
else: | ||
audio_data = self.__load_audio_files(audio_dir, dtype=dtype) | ||
audio_embds = self.get_audio_embeddings(audio_data, sr=self.sample_rate) | ||
if audio_embds_path: | ||
os.makedirs(os.path.dirname(audio_embds_path), exist_ok=True) | ||
np.save(audio_embds_path, audio_embds) | ||
if self.verbose: | ||
print(f"[CLAP score] Loaded {len(audio_embds)} audio embeddings of shape {audio_embds.shape}") | ||
|
||
# Check if embeddings are empty | ||
if len(text_embds) == 0: | ||
print("[CLAP score] text embeddings is empty, exiting...") | ||
return -1 | ||
if len(audio_embds) == 0: | ||
print("[CLAP score] audio embeddings is empty, exiting...") | ||
return -1 | ||
|
||
# Check if embeddings have the same dimension | ||
if text_embds.shape != audio_embds.shape: | ||
print("[CLAP score] text and audio embeddings have different dimensions, exiting...") | ||
return -1 | ||
|
||
# Compute CLAP score | ||
clap_score_mean, clap_score_std = self.calculate_clap_score(text_embds, audio_embds, batch_size) | ||
return clap_score_mean, clap_score_std | ||
except Exception as e: | ||
print(f"[CLAP score] An error occurred: {e}") | ||
return -1 |
Oops, something went wrong.