Skip to content
/ bcfbma Public
forked from EoghanONeill/bcfbma

Bayesian Causal Forests using Bayesian Model Averaging (BCF-BMA)

Notifications You must be signed in to change notification settings

guhjy/bcfbma

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

65 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

bcfbma

The goal of bcfbma is to provide an implementation of Bayesian Causal Forests using Bayesian Model Averaging (BCF-BMA). This combines BART-BMA (Hernandez et al. 2018) and BCF (Hahn et al. 2017).

Hernández, B., Raftery, A. E., Pennington, S. R., & Parnell, A. C. (2018). Bayesian additive regression trees using Bayesian model averaging. Statistics and computing, 28(4), 869-890.

Hahn, P. R., Murray, J. S., & Carvalho, C. (2017). Bayesian regression tree models for causal inference: regularization, confounding, and heterogeneous effects. arXiv preprint arXiv:1706.09523.

Installation

# install.packages("devtools")
devtools::install_github("EoghanONeill/bcfbma")

Example

This is a basic example which shows you how to solve a common problem:

library(bcfbma)
## basic example code

# data generating process
p = 3 #two control variables and one moderator
n = 250
#
set.seed(1)

x = matrix(rnorm(n*p), nrow=n)
# create targeted selection
q = -1*(x[,1]>(x[,2])) + 1*(x[,1]<(x[,2]))
# generate treatment variable
#pi = rep(0.5,n)
#pi=runif(n)/4+0.5
pi= pnorm(q)
z = rbinom(n,1,pi)
# tau is the true (homogeneous) treatment effect
tau = (0.5*(x[,3] > -3/4) + 0.25*(x[,3] > 0) + 0.25*(x[,3]>3/4))
# generate the response using q, tau and z
mu = (q + tau*z)
# set the noise level relative to the expected mean function of Y
sigma = diff(range(q + tau*pi))/8
# draw the response variabligma = diff(range(q + tae with additive error
#y = mu + rnorm(n)#sigma*rnorm(n)
y = mu + sigma*rnorm(n)
# If you didn't know pi, you would estimate it here
pihat = pi#pnorm(q)
class(pihat)
pihat = as.matrix(pihat)


bcfBMA_rfunc_example<-bcfBMA(x,y,z,pihat,
                             a_mu=3,a_tau=1.5,nu=3,sigquant=0.9,c=5000,
                             pen_mu=12,pen_tau=12,num_cp_mu=20,num_cp_tau=20,
                             x.test=matrix(0.0,0,0),test_z = numeric(),test_pihat = matrix(0.0,0,0),
                             ntree_control=5,ntree_moderate=5,
                             alpha_mu=0.95,alpha_tau=0.25,beta_mu=1,beta_tau=3,split_rule_node=0,
                             gridpoint=1,maxOWsize=100,num_splits_mu =25, num_splits_tau =25,
                             gridsize_mu=10, gridsize_tau=10, include_pi= "control",
                             zero_split = 1, only_max_num_trees = 1,mu_or_tau_each_round = 1,
                             min_num_obs_after_mu_split = 5, min_num_obs_after_tau_split = 5,
                             exact_residuals = 1,spike_tree = 0,
                             transform_resids = 0)


#tauhat_bcfbma1  <-  bcfBMA_rfunc_example$fitted.values_tau

tauhat_bcfbma_linalg<-preds_bcfbma_lin_alg(bcfBMA_rfunc_example,num_iter=2000,newdata=NULL)

plot(tau, tauhat_bcfbma_linalg); abline(0,1)


About

Bayesian Causal Forests using Bayesian Model Averaging (BCF-BMA)

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • C++ 93.4%
  • R 6.6%