Skip to content

Tutorial on model assessment, model selection and inference after model selection

Notifications You must be signed in to change notification settings

guhjy/modelselection_tutorial

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

48 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Tutorial on model assesment, selection and inference after selection

Example notebooks in R using rstanarm, rstan, bayesplot, loo, projpred.

Videos

Slides

Outline of the tutorial and links to notebooks

  • Basics of predictive performance estimation
  • When cross-validation is not needed
  • When cross-validation is useful
    • We don't trust the model - roaches
    • Complex model with posterior dependencies - collinear
  • On accuracy of cross-validation
  • Cross-validation and hierarchical models
  • When cross-validation is not enough
  • loo 2.0 (coming soon)
  • Projection predictive model selection

Additional demos added after the tutorial

See also

References

  • Heinze G1, Wallisch C1, Dunkler D: Variable selection - A review and recommendations for the practicing statistician. Biom J. 2018 Jan 2. doi: 10.1002/bimj.201700067. Online
  • Gelman, A., Hwang, J., and Vehtari, A. (2014). Understanding predictive information criteria for Bayesian models. Statistics and Computing, 24(6):997–1016. Preprint
  • Piironen, J. and Vehtari, A. (2016), Comparison of Bayesian predictive methods for model selection, Statistics and Computing 27(3), 711–735. Online
  • Piironen, J., and Vehtari, A. (2017). On the hyperprior choice for the global shrinkage parameter in the horseshoe prior. Proceedings of the 20th International Conference on Artificial Intelligence and Statistics, PMLR 54:905-913. Online
  • Piironen, J., and Vehtari, A. (2017). Sparsity information and regularization in the horseshoe and other shrinkage priors. In Electronic Journal of Statistics, 11(2):5018-5051. Online
  • Piironen, J., and Vehtari, A. (2018). Iterative supervised principal components. Proceedings of the 21th International Conference on Artificial Intelligence and Statistics, accepted for publication. arXiv preprint arXiv:1710.06229
  • Vehtari, A., Gelman, A., Gabry, J. (2017). Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC. Statistics and Computing. 27(5):1413–1432. arXiv preprint.
  • Vehtari, A., Gelman, A., Gabry, J. (2017). Pareto smoothed importance sampling. arXiv preprint.
  • Vehtari, A., Mononen, T., Tolvanen, V., and Winther, O. (2016). Bayesian leave-one-out cross-validation approximations for Gaussian latent variable models. JMLR, 17(103):1–38. Online
  • Vehtari, A. and Ojanen, J.: 2012, A survey of Bayesian predictive methods for model assessment, selection and comparison, Statistics Surveys 6, 142–228. Online
  • Yao, Y., Vehtari, A., Simpson, D., and Gelman, A. (2017). Using stacking to average Bayesian predictive distributions. In Bayesian Analysis, doi:10.1214/17-BA1091, Online

About

Tutorial on model assessment, model selection and inference after model selection

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • HTML 99.9%
  • R 0.1%