Skip to content

guochen-code/Hands-on-Machine-Learning

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Hands-on-Machine-Learning

Highlights in Machine Learning

Data preparation: train_test split (stratified sampling) Imputing (missing data) Encoding (categorical data) Scaling (min-max or z-score/standardization) Pipelines

Train models (The goal is to shortlist a few promising models): cross-validatoin underfitting overfitting

Fine tune selected models: GridSearch RandomSearch Ensemble Voting/bagging/boosting/stacking

Analyze best models and their errors:

Evaluate your final model on test set: Usually slightly worse than the results you got with cross-validation, because you fine tuned your model to perform well on the validation data. DO NOT fine tune the model based on your test set.

About

Highlights in Machine Learning

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published