forked from microsoft/onnxruntime
-
Notifications
You must be signed in to change notification settings - Fork 2
/
setup.py
554 lines (493 loc) · 24.3 KB
/
setup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
# ------------------------------------------------------------------------
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License.
# ------------------------------------------------------------------------
from setuptools import setup, Extension
from distutils import log as logger
from distutils.command.build_ext import build_ext as _build_ext
from glob import glob, iglob
from os import path, getcwd, environ, remove
from shutil import copyfile
import platform
import subprocess
import sys
import datetime
from pathlib import Path
nightly_build = False
package_name = 'onnxruntime'
wheel_name_suffix = None
def parse_arg_remove_boolean(argv, arg_name):
arg_value = False
if arg_name in sys.argv:
arg_value = True
argv.remove(arg_name)
return arg_value
def parse_arg_remove_string(argv, arg_name_equal):
arg_value = None
for arg in sys.argv[1:]:
if arg.startswith(arg_name_equal):
arg_value = arg[len(arg_name_equal):]
sys.argv.remove(arg)
break
return arg_value
# Any combination of the following arguments can be applied
if parse_arg_remove_boolean(sys.argv, '--nightly_build'):
package_name = 'ort-nightly'
nightly_build = True
wheel_name_suffix = parse_arg_remove_string(sys.argv, '--wheel_name_suffix=')
cuda_version = None
rocm_version = None
is_rocm = False
# The following arguments are mutually exclusive
if wheel_name_suffix == 'gpu':
# TODO: how to support multiple CUDA versions?
cuda_version = parse_arg_remove_string(sys.argv, '--cuda_version=')
elif parse_arg_remove_boolean(sys.argv, '--use_rocm'):
is_rocm = True
package_name = 'onnxruntime-rocm' if not nightly_build else 'ort-rocm-nightly'
rocm_version = parse_arg_remove_string(sys.argv, '--rocm_version=')
elif parse_arg_remove_boolean(sys.argv, '--use_openvino'):
package_name = 'onnxruntime-openvino'
elif parse_arg_remove_boolean(sys.argv, '--use_dnnl'):
package_name = 'onnxruntime-dnnl'
elif parse_arg_remove_boolean(sys.argv, '--use_nuphar'):
package_name = 'onnxruntime-nuphar'
elif parse_arg_remove_boolean(sys.argv, '--use_tvm'):
package_name = 'onnxruntime-tvm'
elif parse_arg_remove_boolean(sys.argv, '--use_vitisai'):
package_name = 'onnxruntime-vitisai'
elif parse_arg_remove_boolean(sys.argv, '--use_acl'):
package_name = 'onnxruntime-acl'
elif parse_arg_remove_boolean(sys.argv, '--use_armnn'):
package_name = 'onnxruntime-armnn'
# PEP 513 defined manylinux1_x86_64 and manylinux1_i686
# PEP 571 defined manylinux2010_x86_64 and manylinux2010_i686
# PEP 599 defines the following platform tags:
# manylinux2014_x86_64
# manylinux2014_i686
# manylinux2014_aarch64
# manylinux2014_armv7l
# manylinux2014_ppc64
# manylinux2014_ppc64le
# manylinux2014_s390x
manylinux_tags = [
'manylinux1_x86_64',
'manylinux1_i686',
'manylinux2010_x86_64',
'manylinux2010_i686',
'manylinux2014_x86_64',
'manylinux2014_i686',
'manylinux2014_aarch64',
'manylinux2014_armv7l',
'manylinux2014_ppc64',
'manylinux2014_ppc64le',
'manylinux2014_s390x',
]
is_manylinux = environ.get('AUDITWHEEL_PLAT', None) in manylinux_tags
class build_ext(_build_ext):
def build_extension(self, ext):
dest_file = self.get_ext_fullpath(ext.name)
logger.info('copying %s -> %s', ext.sources[0], dest_file)
copyfile(ext.sources[0], dest_file)
try:
from wheel.bdist_wheel import bdist_wheel as _bdist_wheel
class bdist_wheel(_bdist_wheel):
def finalize_options(self):
_bdist_wheel.finalize_options(self)
if not is_manylinux:
self.root_is_pure = False
def _rewrite_ld_preload(self, to_preload):
with open('onnxruntime/capi/_ld_preload.py', 'a') as f:
if len(to_preload) > 0:
f.write('from ctypes import CDLL, RTLD_GLOBAL\n')
for library in to_preload:
f.write('_{} = CDLL("{}", mode=RTLD_GLOBAL)\n'.format(library.split('.')[0], library))
def _rewrite_ld_preload_cuda(self, to_preload):
with open('onnxruntime/capi/_ld_preload.py', 'a') as f:
if len(to_preload) > 0:
f.write('from ctypes import CDLL, RTLD_GLOBAL\n')
f.write('try:\n')
for library in to_preload:
f.write(' _{} = CDLL("{}", mode=RTLD_GLOBAL)\n'.format(library.split('.')[0], library))
f.write('except OSError:\n')
f.write(' import os\n')
f.write(' os.environ["ORT_CUDA_UNAVAILABLE"] = "1"\n')
def _rewrite_ld_preload_tensorrt(self, to_preload):
with open('onnxruntime/capi/_ld_preload.py', 'a') as f:
if len(to_preload) > 0:
f.write('from ctypes import CDLL, RTLD_GLOBAL\n')
f.write('try:\n')
for library in to_preload:
f.write(' _{} = CDLL("{}", mode=RTLD_GLOBAL)\n'.format(library.split('.')[0], library))
f.write('except OSError:\n')
f.write(' import os\n')
f.write(' os.environ["ORT_TENSORRT_UNAVAILABLE"] = "1"\n')
def run(self):
if is_manylinux:
source = 'onnxruntime/capi/onnxruntime_pybind11_state.so'
dest = 'onnxruntime/capi/onnxruntime_pybind11_state_manylinux1.so'
logger.info('copying %s -> %s', source, dest)
copyfile(source, dest)
result = subprocess.run(['patchelf', '--print-needed', dest],
check=True, stdout=subprocess.PIPE, universal_newlines=True)
dependencies = ['librccl.so', 'libamdhip64.so', 'librocblas.so', 'libMIOpen.so',
'libhsa-runtime64.so', 'libhsakmt.so']
to_preload = []
to_preload_cuda = []
to_preload_tensorrt = []
cuda_dependencies = []
args = ['patchelf', '--debug']
for line in result.stdout.split('\n'):
for dependency in dependencies:
if dependency in line:
to_preload.append(line)
args.extend(['--remove-needed', line])
args.append(dest)
if len(args) > 3:
subprocess.run(args, check=True, stdout=subprocess.PIPE)
dest = 'onnxruntime/capi/libonnxruntime_providers_' + ('rocm.so' if is_rocm else 'cuda.so')
if path.isfile(dest):
result = subprocess.run(['patchelf', '--print-needed', dest],
check=True, stdout=subprocess.PIPE, universal_newlines=True)
cuda_dependencies = ['libcublas.so', 'libcublasLt.so', 'libcudnn.so', 'libcudart.so',
'libcurand.so', 'libcufft.so', 'libnvToolsExt.so', 'libcupti.so']
rocm_dependencies = ['librccl.so', 'libamdhip64.so', 'librocblas.so', 'libMIOpen.so',
'libhsa-runtime64.so', 'libhsakmt.so']
args = ['patchelf', '--debug']
for line in result.stdout.split('\n'):
for dependency in (cuda_dependencies + rocm_dependencies):
if dependency in line:
if dependency not in to_preload:
to_preload_cuda.append(line)
args.extend(['--remove-needed', line])
args.append(dest)
if len(args) > 3:
subprocess.run(args, check=True, stdout=subprocess.PIPE)
dest = 'onnxruntime/capi/libonnxruntime_providers_' + ('migraphx.so' if is_rocm else 'tensorrt.so')
if path.isfile(dest):
result = subprocess.run(['patchelf', '--print-needed', dest],
check=True, stdout=subprocess.PIPE, universal_newlines=True)
tensorrt_dependencies = ['libnvinfer.so', 'libnvinfer_plugin.so', 'libnvonnxparser.so']
args = ['patchelf', '--debug']
for line in result.stdout.split('\n'):
for dependency in (cuda_dependencies + tensorrt_dependencies):
if dependency in line:
if dependency not in (to_preload + to_preload_cuda):
to_preload_tensorrt.append(line)
args.extend(['--remove-needed', line])
args.append(dest)
if len(args) > 3:
subprocess.run(args, check=True, stdout=subprocess.PIPE)
self._rewrite_ld_preload(to_preload)
self._rewrite_ld_preload_cuda(to_preload_cuda)
self._rewrite_ld_preload_tensorrt(to_preload_tensorrt)
_bdist_wheel.run(self)
if is_manylinux and not disable_auditwheel_repair:
file = glob(path.join(self.dist_dir, '*linux*.whl'))[0]
logger.info('repairing %s for manylinux1', file)
try:
subprocess.run(['auditwheel', 'repair', '-w', self.dist_dir, file],
check=True, stdout=subprocess.PIPE)
finally:
logger.info('removing %s', file)
remove(file)
except ImportError as error:
print("Error importing dependencies:")
print(error)
bdist_wheel = None
providers_cuda_or_rocm = 'libonnxruntime_providers_' + ('rocm.so' if is_rocm else 'cuda.so')
providers_tensorrt_or_migraphx = 'libonnxruntime_providers_' + ('migraphx.so' if is_rocm else 'tensorrt.so')
# Additional binaries
if platform.system() == 'Linux':
libs = ['onnxruntime_pybind11_state.so', 'libdnnl.so.2', 'libmklml_intel.so', 'libmklml_gnu.so', 'libiomp5.so',
'mimalloc.so', 'libonnxruntime_providers_hailo.so']
dl_libs = ['libonnxruntime_providers_shared.so']
dl_libs.append(providers_cuda_or_rocm)
dl_libs.append(providers_tensorrt_or_migraphx)
# DNNL, TensorRT & OpenVINO EPs are built as shared libs
libs.extend(['libonnxruntime_providers_shared.so'])
libs.extend(['libonnxruntime_providers_dnnl.so'])
libs.extend(['libonnxruntime_providers_openvino.so'])
libs.append(providers_cuda_or_rocm)
libs.append(providers_tensorrt_or_migraphx)
# Nuphar Libs
libs.extend(['libtvm.so.0.5.1'])
if nightly_build:
libs.extend(['libonnxruntime_pywrapper.so'])
elif platform.system() == "Darwin":
libs = ['onnxruntime_pybind11_state.so', 'libdnnl.2.dylib', 'mimalloc.so'] # TODO add libmklml and libiomp5 later.
# DNNL & TensorRT EPs are built as shared libs
libs.extend(['libonnxruntime_providers_shared.dylib'])
libs.extend(['libonnxruntime_providers_dnnl.dylib'])
libs.extend(['libonnxruntime_providers_tensorrt.dylib'])
libs.extend(['libonnxruntime_providers_cuda.dylib'])
if nightly_build:
libs.extend(['libonnxruntime_pywrapper.dylib'])
else:
libs = ['onnxruntime_pybind11_state.pyd', 'dnnl.dll', 'mklml.dll', 'libiomp5md.dll']
# DNNL, TensorRT & OpenVINO EPs are built as shared libs
libs.extend(['onnxruntime_providers_shared.dll'])
libs.extend(['onnxruntime_providers_dnnl.dll'])
libs.extend(['onnxruntime_providers_tensorrt.dll'])
libs.extend(['onnxruntime_providers_openvino.dll'])
libs.extend(['onnxruntime_providers_cuda.dll'])
# DirectML Libs
libs.extend(['DirectML.dll'])
# Nuphar Libs
libs.extend(['tvm.dll'])
if nightly_build:
libs.extend(['onnxruntime_pywrapper.dll'])
if is_manylinux:
data = ['capi/libonnxruntime_pywrapper.so'] if nightly_build else []
data += [path.join('capi', x) for x in dl_libs if path.isfile(path.join('onnxruntime', 'capi', x))]
ext_modules = [
Extension(
'onnxruntime.capi.onnxruntime_pybind11_state',
['onnxruntime/capi/onnxruntime_pybind11_state_manylinux1.so'],
),
]
else:
data = [path.join('capi', x) for x in libs if path.isfile(path.join('onnxruntime', 'capi', x))]
ext_modules = []
# Additional examples
examples_names = ["mul_1.onnx", "logreg_iris.onnx", "sigmoid.onnx"]
examples = [path.join('datasets', x) for x in examples_names]
# Extra files such as EULA and ThirdPartyNotices
extra = ["LICENSE", "ThirdPartyNotices.txt", "Privacy.md"]
# Description
README = path.join(getcwd(), "docs/python/README.rst")
if not path.exists(README):
this = path.dirname(__file__)
README = path.join(this, "docs/python/README.rst")
if not path.exists(README):
raise FileNotFoundError("Unable to find 'README.rst'")
with open(README) as f:
long_description = f.read()
# Include files in onnxruntime/external if --enable_external_custom_op_schemas build.sh command
# line option is specified.
# If the options is not specified this following condition fails as onnxruntime/external folder is not created in the
# build flow under the build binary directory.
if (path.isdir(path.join("onnxruntime", "external"))):
# Gather all files under onnxruntime/external directory.
extra.extend(list(str(Path(*Path(x).parts[1:])) for x in list(iglob(
path.join(path.join("onnxruntime", "external"), '**/*.*'), recursive=True))))
packages = [
'onnxruntime',
'onnxruntime.backend',
'onnxruntime.capi',
'onnxruntime.capi.training',
'onnxruntime.datasets',
'onnxruntime.tools',
'onnxruntime.tools.ort_format_model',
'onnxruntime.tools.ort_format_model.ort_flatbuffers_py',
'onnxruntime.tools.ort_format_model.ort_flatbuffers_py.fbs',
'onnxruntime.quantization',
'onnxruntime.quantization.operators',
'onnxruntime.quantization.CalTableFlatBuffers',
'onnxruntime.transformers',
'onnxruntime.transformers.longformer',
]
requirements_file = "requirements.txt"
local_version = None
enable_training = parse_arg_remove_boolean(sys.argv, '--enable_training')
disable_auditwheel_repair = parse_arg_remove_boolean(sys.argv, '--disable_auditwheel_repair')
default_training_package_device = parse_arg_remove_boolean(sys.argv, '--default_training_package_device')
package_data = {}
data_files = []
classifiers = [
'Development Status :: 5 - Production/Stable',
'Intended Audience :: Developers',
'License :: OSI Approved :: MIT License',
'Operating System :: POSIX :: Linux',
'Topic :: Scientific/Engineering',
'Topic :: Scientific/Engineering :: Mathematics',
'Topic :: Scientific/Engineering :: Artificial Intelligence',
'Topic :: Software Development',
'Topic :: Software Development :: Libraries',
'Topic :: Software Development :: Libraries :: Python Modules',
'Programming Language :: Python',
'Programming Language :: Python :: 3 :: Only',
'Programming Language :: Python :: 3.6',
'Programming Language :: Python :: 3.7',
'Programming Language :: Python :: 3.8',
'Programming Language :: Python :: 3.9']
if not enable_training:
classifiers.extend([
'Operating System :: Microsoft :: Windows',
'Operating System :: MacOS'])
if enable_training:
packages.extend(['onnxruntime.training',
'onnxruntime.training.amp',
'onnxruntime.training.experimental',
'onnxruntime.training.experimental.gradient_graph',
'onnxruntime.training.optim',
'onnxruntime.training.ortmodule',
'onnxruntime.training.ortmodule.experimental',
'onnxruntime.training.ortmodule.experimental.json_config',
'onnxruntime.training.ortmodule.experimental.hierarchical_ortmodule',
'onnxruntime.training.ortmodule.torch_cpp_extensions',
'onnxruntime.training.ortmodule.torch_cpp_extensions.cpu.aten_op_executor',
'onnxruntime.training.ortmodule.torch_cpp_extensions.cpu.torch_interop_utils',
'onnxruntime.training.ortmodule.torch_cpp_extensions.cuda.torch_gpu_allocator',
'onnxruntime.training.ortmodule.torch_cpp_extensions.cuda.fused_ops',
'onnxruntime.training.utils.data'])
package_data['onnxruntime.training.ortmodule.torch_cpp_extensions.cpu.aten_op_executor'] = ['*.cc']
package_data['onnxruntime.training.ortmodule.torch_cpp_extensions.cpu.torch_interop_utils'] = ['*.cc']
package_data['onnxruntime.training.ortmodule.torch_cpp_extensions.cuda.torch_gpu_allocator'] = ['*.cc']
package_data['onnxruntime.training.ortmodule.torch_cpp_extensions.cuda.fused_ops'] = \
['*.cpp', '*.cu', '*.cuh', '*.h']
requirements_file = "requirements-training.txt"
# with training, we want to follow this naming convention:
# stable:
# onnxruntime-training-1.7.0+cu111-cp36-cp36m-linux_x86_64.whl
# nightly:
# onnxruntime-training-1.7.0.dev20210408+cu111-cp36-cp36m-linux_x86_64.whl
# this is needed immediately by pytorch/ort so that the user is able to
# install an onnxruntime training package with matching torch cuda version.
package_name = 'onnxruntime-training'
# we want put default training packages to pypi. pypi does not accept package with a local version.
if not default_training_package_device or nightly_build:
if cuda_version:
# removing '.' to make Cuda version number in the same form as Pytorch.
local_version = '+cu' + cuda_version.replace('.', '')
elif rocm_version:
# removing '.' to make Rocm version number in the same form as Pytorch.
local_version = '+rocm' + rocm_version.replace('.', '')
else:
# cpu version for documentation
local_version = '+cpu'
if package_name == 'onnxruntime-nuphar':
packages += ["onnxruntime.nuphar"]
extra += [path.join('nuphar', 'NUPHAR_CACHE_VERSION')]
if package_name == 'onnxruntime-tvm':
packages += ['onnxruntime.providers.tvm']
package_data["onnxruntime"] = data + examples + extra
version_number = ''
with open('VERSION_NUMBER') as f:
version_number = f.readline().strip()
if nightly_build:
# https://docs.microsoft.com/en-us/azure/devops/pipelines/build/variables
build_suffix = environ.get('BUILD_BUILDNUMBER')
if build_suffix is None:
# The following line is only for local testing
build_suffix = str(datetime.datetime.now().date().strftime("%Y%m%d"))
else:
build_suffix = build_suffix.replace('.', '')
if len(build_suffix) > 8 and len(build_suffix) < 12:
# we want to format the build_suffix to avoid (the 12th run on 20210630 vs the first run on 20210701):
# 2021063012 > 202107011
# in above 2021063012 is treated as the latest which is incorrect.
# we want to convert the format to:
# 20210630012 < 20210701001
# where the first 8 digits are date. the last 3 digits are run count.
# as long as there are less than 1000 runs per day, we will not have the problem.
# to test this code locally, run:
# NIGHTLY_BUILD=1 BUILD_BUILDNUMBER=202107011 python tools/ci_build/build.py --config RelWithDebInfo \
# --enable_training --use_cuda --cuda_home /usr/local/cuda --cudnn_home /usr/lib/x86_64-linux-gnu/ \
# --nccl_home /usr/lib/x86_64-linux-gnu/ --build_dir build/Linux --build --build_wheel --skip_tests \
# --cuda_version 11.1
def check_date_format(date_str):
try:
datetime.datetime.strptime(date_str, '%Y%m%d')
return True
except: # noqa
return False
def reformat_run_count(count_str):
try:
count = int(count_str)
if count >= 0 and count < 1000:
return "{:03}".format(count)
elif count >= 1000:
raise RuntimeError(f'Too many builds for the same day: {count}')
return ""
except: # noqa
return ""
build_suffix_is_date_format = check_date_format(build_suffix[:8])
build_suffix_run_count = reformat_run_count(build_suffix[8:])
if build_suffix_is_date_format and build_suffix_run_count:
build_suffix = build_suffix[:8] + build_suffix_run_count
elif len(build_suffix) >= 12:
raise RuntimeError(f'Incorrect build suffix: "{build_suffix}"')
if enable_training:
from packaging import version
from packaging.version import Version
# with training package, we need to bump up version minor number so that
# nightly releases take precedence over the latest release when --pre is used during pip install.
# eventually this shall be the behavior of all onnxruntime releases.
# alternatively we may bump up version number right after every release.
ort_version = version.parse(version_number)
if isinstance(ort_version, Version):
# TODO: this is the last time we have to do this!!!
# We shall bump up release number right after release cut.
if ort_version.major == 1 and ort_version.minor == 8 and ort_version.micro == 0:
version_number = '{major}.{minor}.{macro}'.format(
major=ort_version.major,
minor=ort_version.minor + 1,
macro=ort_version.micro)
version_number = version_number + ".dev" + build_suffix
if local_version:
version_number = version_number + local_version
if wheel_name_suffix:
if not (enable_training and wheel_name_suffix == 'gpu'):
# for training packages, local version is used to indicate device types
package_name = "{}-{}".format(package_name, wheel_name_suffix)
cmd_classes = {}
if bdist_wheel is not None:
cmd_classes['bdist_wheel'] = bdist_wheel
cmd_classes['build_ext'] = build_ext
requirements_path = path.join(getcwd(), requirements_file)
if not path.exists(requirements_path):
this = path.dirname(__file__)
requirements_path = path.join(this, requirements_file)
if not path.exists(requirements_path):
raise FileNotFoundError("Unable to find " + requirements_file)
with open(requirements_path) as f:
install_requires = f.read().splitlines()
if enable_training:
def save_build_and_package_info(package_name, version_number, cuda_version, rocm_version):
sys.path.append(path.join(path.dirname(__file__), 'onnxruntime', 'python'))
from onnxruntime_collect_build_info import find_cudart_versions
version_path = path.join('onnxruntime', 'capi', 'build_and_package_info.py')
with open(version_path, 'w') as f:
f.write("package_name = '{}'\n".format(package_name))
f.write("__version__ = '{}'\n".format(version_number))
if cuda_version:
f.write("cuda_version = '{}'\n".format(cuda_version))
# cudart_versions are integers
cudart_versions = find_cudart_versions(build_env=True)
if cudart_versions and len(cudart_versions) == 1:
f.write("cudart_version = {}\n".format(cudart_versions[0]))
else:
print(
"Error getting cudart version. ",
"did not find any cudart library"
if not cudart_versions or len(cudart_versions) == 0
else "found multiple cudart libraries")
elif rocm_version:
f.write("rocm_version = '{}'\n".format(rocm_version))
save_build_and_package_info(package_name, version_number, cuda_version, rocm_version)
# Setup
setup(
name=package_name,
version=version_number,
description='ONNX Runtime is a runtime accelerator for Machine Learning models',
long_description=long_description,
author='Microsoft Corporation',
author_email='onnxruntime@microsoft.com',
cmdclass=cmd_classes,
license="MIT License",
packages=packages,
ext_modules=ext_modules,
package_data=package_data,
url="https://onnxruntime.ai",
download_url='https://github.com/microsoft/onnxruntime/tags',
data_files=data_files,
install_requires=install_requires,
keywords='onnx machine learning',
entry_points={
'console_scripts': [
'onnxruntime_test = onnxruntime.tools.onnxruntime_test:main',
]
},
classifiers=classifiers,
)